首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), micro X-ray fluorescence spectroscopy (μXRF), and laser induced breakdown spectroscopy (LIBS) are compared in terms of discrimination power for a glass sample set consisting of 41 fragments. Excellent discrimination results (> 99% discrimination) were obtained for each of the methods. In addition, all three analytical methods produced very similar discrimination results in terms of the number of pairs found to be indistinguishable. The small number of indistinguishable pairs that were identified all originated from the same vehicle. The results also show a strong correlation between the data generated from the use of µXRF and LA-ICP-MS, when comparing µXRF strontium intensities to LA-ICP-MS strontium concentrations. A 266 nm laser was utilized for all LIBS analyses, which provided excellent precision (< 10% RSD for all elements and < 10% RSD for all ratios, N = 5). The paper also presents a thorough data analysis review for forensic glass examinations by LIBS and suggests several element ratios that provide accurate discrimination results related to the LIBS system used for this study. Different combinations of 10 ratios were used for discrimination, all of which assisted with eliminating Type I errors (false exclusions) and reducing Type II errors (false inclusions). The results demonstrate that the LIBS experimental setup described, when combined with a comprehensive data analysis protocol, provides comparable discrimination when compared to LA-ICP-MS and μXRF for the application of forensic glass examinations. Given the many advantages that LIBS offers, most notably reduced complexity and reduced cost of the instrumentation, LIBS is a viable alternative to LA-ICP-MS and μXRF for use in the forensic laboratory.  相似文献   

2.
Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm–II:1064 nm, I:532 nm–II:532 nm, and I:532 nm–II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm–II:355 nm.  相似文献   

3.
Laser induced breakdown spectrometry (LIBS) combined with laser induced fluorescence spectrometry (LIFS) has been applied for detection of trace-level phosphorus in steel. The plasma induced by irradiation of Nd:YAG laser pulse for ablation was illuminated by the 3rd harmonic of Ti:Sapphire laser tuned to one of the resonant lines for phosphorus in the wavelength region of 253–256 nm. An excitation line for phosphorus was selected to give the highest signal-to-noise ratio. Fluorescence signals, P213.62 and P214.91 nm, were observed with high selectivity at the contents as low as several tens µg g− 1. Fluorescence intensities were in a good linear correlation with the contents. Fluorescence intensity ratio of a collisionally assisted line (213.62 nm) to a direct transition line (214.91 nm) was discussed in terms of the analytical conditions and experimental results were compared with a calculation based on rate equations. Since the fluorescence signal light in the wavelength range longer than 200 nm can be transmitted relatively easily, even through fiber optics of moderate length, LIBS/LIFS would be a versatile technique in on-site applications for the monitoring of phosphorus contents in steel.  相似文献   

4.
Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.  相似文献   

5.
Laser-induced breakdown spectroscopy (LIBS) has been used to determine the lead content of different types of lead silicate glasses commercially designed as sonorous glass (which contain ∼ 10 wt.% PbO); crystal glass (with at least 24 wt.% PbO) and superior crystal glass (with at least 30 wt.% PbO). Seven different types of glass samples were selected, including historic-original, model and commercially available. The selected samples were artificially weathered under neutral, acid and alkaline attack. Analysis by LIBS was carried out in vacuum under excitation at 266 nm and results were compared with those obtained by conventional techniques used for glass characterization. Composition of the bulk glasses was analyzed by XRF (X-ray fluorescence) and the corroded surfaces were characterized by SEM/EDX (scanning electron microscopy/energy dispersive X-ray microanalysis). A linear correlation was obtained between the intensity of selected Pb lines in the LIB spectra and the PbO content. The effect of corrosion could be characterized by comparing successive LIB spectra recorded on the same area; acid attack resulted in a decrease of PbO, CaO and Na2O content in the surface with respect to the bulk of the sample, while minor changes in the composition were noticed under alkaline attack. These results show LIBS as a useful technique to classify the different types of lead glasses by their lead content and to determine and asses the degree and type of corrosion.  相似文献   

6.
Laser induced breakdown spectroscopy (LIBS) is an emerging technique for fast and accurate compositional analysis of many different materials. We present a systematic study of collinear double-pulse LIBS on different technical polymers such as polyamide, polyvinyl chloride, polyethylene etc. Polymer samples were ablated in air by single-pulse and double-pulse Nd:YAG laser radiation (8 ns pulse duration) and spectra were recorded with an Echelle spectrometer equipped with an ICCD camera. We investigated the evolution of atomic and ionic line emission intensities for different delay times between the laser pulses (from 20 ns to 500 μs) at a laser wavelength of 532 nm. We observed double-pulse LIBS signals that were enhanced as compared to single-pulse measurements depending on the delay time and the type of polymer material investigated. LIBS signals of polymer materials that are enhanced by double-pulse excitation may be useful for monitoring the concentration of heavy metals in polymer materials.  相似文献   

7.
An acoustic signal was used for the internal standardization of laser-induced breakdown spectroscopy (LIBS) of a glazed wall tile. For the LIBS analyses, 1064 nm and 532 nm wavelengths of the Nd:YAG laser were utilized. The tile was depth profiled by a single-spot ablation from the glaze into the substrate. Some lines of major elements Si(I) 252.418, Si(I) 252.851, Al(I) 257.509, Cr(I) 295.368, Al(I) 309.271 nm and Ti(II) 334.904 nm were monitored. The decrease in the optical emissions during the ablation was successfully compensated for by normalization to the square power of the acoustic signal in the interval of 290–340 nm. This approach failed for the lines between 250–270 nm. The results were the same for both lasing wavelengths despite different irradiances. The acquired profiles are in good agreement with the reference X-ray fluorescence measurement.  相似文献   

8.
Influence of laser wavelength, laser irradiance and the buffer gas pressure were studied in high irradiance laser ablation and ionization source coupled with an orthogonal time-of-flight mass spectrometer. Collisional cooling effects of energetic plasma ions were proved to vary significantly with the elemental mass number. Effective dissociation of interferential polyatomic ions in the ion source, resulting from collision and from high laser irradiance, was verified. Investigation of relative sensitivity coefficients (RSC) of different elements performed on a steel standard GBW01396, which was ablated at 1064 nm, 532 nm, 355 nm, and 266 nm, has demonstrated that the thermal ablation mechanism could play a critical role with the first three wavelengths, while 266 nm induces non-thermal ablation principally. Experimental results also indicated that there is no evident discrepancy for most metal elements on RSCs and LODs among four wavelengths at high irradiance, except that high boiling point elements like Nb, Mo, and W have higher RSCs at higher irradiance regions of 1064 nm, 532 nm, and 355 nm due to thermal ablation. A geological standard and a garnet stone were also used in the experiment subsequently, and their RSCs and LODs for metal elements show nonsignificant dependence on wavelength at designated irradiances. All results reveal that relatively uniform sensitivity can be achieved at any wavelength for metal elements in the solids used in our experiments at an appropriate irradiance for the low pressure high irradiance laser ablation and ionization source.  相似文献   

9.
Laser micropyrolysis gas chromatography mass spectrometry (GC-MS) allows analytical pyrolysis to be conducted with micro-spatial resolution. Despite the large range of contemporary laser sources, most previous laser pyrolysis studies have been conducted with continuous wave (CW) infrared irradiation. Here, the laser micropyrolysis analysis of a Sydney torbanite was conducted with three different laser sources - 1. CW 532 nm; 2. Q-Switched (QSw) pulsed 1064 nm; and 3. QSw pulsed 266 nm - to compare the molecular analyses attributes of different laser types (λ: 266-1064 nm; CW or QSw). The CW 532 nm laser irradiation consistently produced high concentrations of n-hydrocarbons, with lesser amounts of cyclic and aromatic hydrocarbons, similar to previous analyses with both CW 1064 nm laser pyrolysis and conventional analytical pyrolysis [1]. In contrast, both the IR and UV QSw pulsed irradiation sources provided poor and varied data. Relatively low concentrations of n-hydrocarbons were occasionally produced, but most often no structurally significant products were detected. The poor maintenance of hydrocarbon structural units by the short pulse lasers can be attributed to the very high power density delivered, leading to excessive degradation of the irradiated macromolecule.  相似文献   

10.
The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm; 202.585 nm; 202.586 nm; 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min− 1 sample flow-rate, calibration curves in the 0.1–0.5 mg L− 1 Cu, 0.5–4.0 mg L− 1 Fe, 0.5–4.0 mg L− 1 Mn, 0.2–1.0 mg L− 1 Zn, 10.0–100.0 mg L− 1 Ca, 5.0–40.0 mg L− 1 Mg and 50.0–250.0 mg L− 1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89–103%, 84–107%, 87–103%, 85–105%, 92–106%, 91–114%, 96–114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L− 1 Ca, 0.4 mg L− 1 Mg, 0.4 mg L− 1 K, 7.7 µg L− 1 Cu, 7.7 µg L− 1 Fe, 1.5 µg L− 1 Mn and 5.9 µg L− 1 Zn.  相似文献   

11.
2-D elemental distribution of Ge in silicon oxide substrates with differing implantation doses of between 3 × 1016 cm− 2 and 1.5 × 1017 cm− 2 has been investigated by Laser-Induced Breakdown Spectroscopy (LIBS). Spectral emission intensity has been optimized with respect to time, crater size, ablation depth and laser energy. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive X-Ray Spectroscopy (EDX) have been utilized to obtain crater depth, morphology and elemental composition of the sample material, respectively. LIBS spectral data revealed the possibility of performing 2-D distribution analysis of Ge atoms in silicon oxide substrate. EDX analysis results confirmed that LIBS is capable to detect Ge atoms at concentrations lower than 0.2% (atomic). LIBS as a fast semi-quantitative analysis method with 50 µm lateral and 800 nm depth resolution has been evaluated. Results illustrate the potential use of LIBS for rapid, on-line assessment of the quality of advanced technology materials during the manufacturing process.  相似文献   

12.
The development of a new detection system for laser induced breakdown spectroscopy (LIBS), based on a collinear quartz acousto-optical tunable filter (AOTF) for the ultraviolet spectral region coupled to a photomultiplier, is described. It was used in conjunction with a 1064 nm, 5 ns pulse duration neodymium-doped yttrium aluminium garnet (Nd:YAG) laser source and also employed a radio-frequency signal generator to control the AOTF and a digital delay generator to delay the start of the detection in relation to the instant of the application of the laser pulse. The detection system was optimized for highest detectivity for the manganese peak at 293.9 nm while analyzing a steel sample by LIBS. The resulting signal to background ratio at the optimal conditions of 2 µs delay time, 40 µs integration time gate and 110 mJ pulse energy was similar to that of a commercial echelle-intensified charge-coupled device (echelle-ICCD) detection system. The new detection system was then employed for manganese determination in steel samples, taking the emission signals at just 15 wavelengths, 5 related to the above mentioned manganese peak, another 5 to background emission around 296.0 nm and the others to the iron peak at 297.3 nm (internal standard). The resulting analytical curve for manganese, obtained using 5 samples in the concentration range of 0.214 to 0.939% w/w, presented a correlation coefficient of 0.979 for an exponential regression function. The relative errors of predicting the manganese concentrations, using the calibration curve, for 2 samples, containing 0.277 and 0.608% w/w, were 20.7 and − 1.9%, respectively.  相似文献   

13.
Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) has been used for the first time for quantitative determination of nutrients in plant materials from different crops. A highly heterogeneous population of 31 samples, previously analyzed by inductively coupled plasma optical emission spectroscopy, covering a wide range of matrices was interrogated. To tackle the analysis, laser-induced plasmas under argon atmosphere of pellets prepared from sieved cryogenically ground leaves were studied. Predictive functions based on univariate and multivariate modeling of optical emissions associated to macro- (Ca, Mg, and P) and micronutrients (Cu, Fe, Mn and Zn) were designed. Hierarchical cluster analysis was performed to select representative calibration (ncal = 17) and validation (nval = 14) datasets. The predictive performance of calibration functions over fs-LIBS data was compared with that attained on spectral information from nanosecond LIBS (ns-LIBS) operating at different wavelengths (1064 nm, 532 nm, and 266 nm). Findings established higher accuracy and less uncertainty on mass fractions quantification from fs-LIBS, whatever the modeling approach. Quality coefficients below 20% for the accuracy error on mass fractions’ prediction in unknown samples, and residual predictive deviations in general above 5, were obtained. In contrast, only multivariate modeling satisfactorily handled the non-linear variations of emissions in ns-LIBS, leading to 2-fold decrease in the root mean square error of prediction (RMSEP) of Ca, Mg, P, Cu, Fe, Mn and Zn in comparison with the univariate approach. But still, an averaged quality coefficient about 35% and residual predictive deviations below 3 were found. Similar predictive capabilities were observed when changing the laser wavelength. Although predicted values by ns-LIBS multivariate modeling exhibit better agreement with reference mass fractions as compared to univariate functions, fs-LIBS conducts better quantification of nutrients in plant materials since it is less dependent on the chemical composition of the matrices.  相似文献   

14.
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9–1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1–10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.  相似文献   

15.
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.  相似文献   

16.
Trejos T  Almirall JR 《Talanta》2005,67(2):388-395
The authors have previously reported the use of laser ablation ICP-MS as a powerful analytical tool for elemental analysis of glass. LA is a simpler, faster and less intrusive sample introduction method than the conventional solution ICP-MS. Due to the minute amount of material removed in LA (∼300 ng, 50 μm crater size), the analyst should be aware of special sampling considerations such as characterization of the glass fragments originating from the “known” source, fragment size and selection of the area and surface of ablation.The purpose of this work was to evaluate the micro-homogeneity of the elemental composition of glass samples commonly found in crime scenes like containers, architectural windows and windshields. The set of glasses under study was comprised of 56 fragments originated from glass containers, 28 fragments from automobile windshields and 20 fragments from architectural windowpanes. All fragments were selected with a size smaller than 2 mm2 in order to simulate the typical glass fragments transferred from the crime scenarios. A Nd:YAG laser, 266 nm, flat top beam profile was used in single point mode sampling 50 μm spot size for 50 s at 10 Hz (500 shots). In this study, 29Si was used as an internal standard and the standard reference material, SRM NIST 612, was used as a single point external calibrator. In addition, SRM 621 was used as another control standard for the containers set and SRM 1831 for the automobile and architectural window sets due to their very similar matrix with the samples of interest. For each set of glasses, the mean values and standard deviation of 10 replicates (n = 10) of a single fragment were compared with the values obtained from 10 (n = 10) different fragments of glass within the area of interest in order to evaluate whether or not the variation within a glass was bigger than the variation due to the method. In addition, a subset of tempered glasses was evaluated to perform an elemental composition profile within different depths of the fragments. Single shot (one laser pulse per analysis) was also evaluated and its limitations for the forensic analysis of glass are also presented. The results show that float glass is homogenous even at the micro-range level allowing LA-ICP-MS as an alternative technique to perform elemental analysis of glass. However, the variation of elemental composition of headlamps and containers is larger over the source than the instrumental variation due to inherent heterogeneity and therefore specific statistical methods are recommended to compare the glass samples.  相似文献   

17.
《Comptes Rendus Chimie》2002,5(11):679-692
Intrinsic and extrinsic ultraviolet absorption and radiation-induced effects were investigated in different glass types, fluorides, phosphates and borosilicates. High-purity glass samples were prepared and their intrinsic absorption was measured in the vacuum ultraviolet region. The influence of doped iron and tin species in the ppm range on the ultraviolet absorption and radiation-induced effects were studied. The maximum of the dominating Fe3+ charge transfer band has the lowest energy (4.8 eV) and intensity in the fluoride glass and the highest energy (5.6 eV) and intensity in the borosilicate glass samples. The charge-transfer band for Fe2+ has much lower intensity and higher energy (∼5.7 eV) than those for Fe3+ in all glasses investigated. Photo-oxidation of Fe2+ to (Fe2+)+ hole centres and glass-matrix-related electron centres by UV irradiation increases the UV absorption drastically in all glasses. The kinetics was measured and simulated depending on the glass matrix. In fluoride and phosphate glasses, Fe3+ complexes are very stable against UV irradiation and do not participate in UV-radiation-induced processes. Only in silicate glasses, Fe3+ is able to form a (Fe3+) electron centre defect which decreases the charge transfer absorption of Fe3+ near 220 nm, but increase the absorption of hole centre defects, with a maximum at 280 nm. So, the defect generation in the ultraviolet region increases drastically with increasing Fe content in the range 10–200 ppm. Three or four electronic s → p transitions for Sn2+ were detected by optical absorption and luminescence spectroscopy shifted to longer wavelength in the range fluoride → phosphate → silicate glass samples. Sn4+ absorption bands were found at shorter wavelength in the vacuum ultraviolet region in all cases investigated. Sn2+ ions are photo-oxidised under UV radiation very fast, which leads to an decrease of absorption near 200 nm and to an increase near 250 nm. Both Sn2+ and Sn4+ are involved in the radiation-induced processes. In contrast to phosphate and silicate glasses, tin-doped fluoride glasses are very resistant against UV lamp but not against UV laser irradiation. The mechanisms are very complicated, with maximums and minimums in the defect formation curves.  相似文献   

18.
Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s− 1. Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.  相似文献   

19.
The influence of sample properties and composition on the size and concentration of aerosol particles generated by nanosecond Nd:YAG laser ablation at 213 nm was investigated for three sets of different materials, each containing five specimens with a similar matrix (Co-cemented carbides with a variable content of W and Co, steel samples with minor differences in elemental content and silica glasses with various colors). The concentration of ablated particles (particle number concentration, PNC) was measured in two size ranges (10–250 nm and 0.25–17 µm) using an optical aerosol spectrometer. The shapes and volumes of the ablation craters were obtained by Scanning Electron Microscopy (SEM) and by an optical profilometer, respectively. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using SEM.  相似文献   

20.
The laser ablation technique has been employed to study silver colloidal formation. Laser intensities, irradiation wavelengths (1064 nm and 532 nm), and solvents (water, methanol, and isopropanol) were all considered. Changes of the maximum UV-Visible absorbance of the solutions with laser intensities exhibited nonlinear behavior for 1064 nm and 532 nm and displayed better ablation efficiency at 532 nm. Larger mean sizes were observed at 532 nm or at higher pulse energy. For solvent effect, the bigger particle sizes were generated in H2O. As to colloidal stability, isopropanol, which has a lower dielectric constant than water, was found to stabilize Ag nanoparticles without protecting reagents over six months. Preliminary results in 2-butanol suggested that the viscosity of solvent may need to be considered in addition to the dielectric constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号