首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development and characterization of a new, relatively inexpensive, computer-controlled, particle sample introduction (PSI) system for programmable delivery of small amounts of diluted powdered samples into an inductively coupled plasma (ICP) and measurement by atomic emission spectrometry (AES) is described. The PSI was developed for use with non-hygroscopic particles, in particular those with a particle weight in the ng range (i.e., with a diameter in low μm-range) and for solids that can be converted to a powder (i.e., a collection of particles). In this first report on PSI–ICP–AES, linearity of calibration curves and plasma loading concerns were addressed using three modes of operation. In the first mode, the PSI operated similar to a nebulizer and it delivered to the plasma for a period of 5–10 s a relatively constant amount of particles diluted with graphite. In the second mode, the PSI delivered to the plasma a small “puff” of a diluted sample, thus generating a transient, time-domain signal with duration of about a second. In the third mode, an even smaller “puff” was delivered to the plasma and, using high-speed data acquisition (in the kHz range), time-resolved emission signals from individual, μm-diameter and ng-weight particles were observed. Thus, the PSI can also be thought of as a nano-particle (i.e., ng rather than nm) sample introduction system. Similarly, the high-speed, wide-bandwidth single-channel time-resolved data acquisition mode enabled the determination of particle-size distribution. In addition, a dual-channel (or dual-element) mode enabled homogeneity studies on a per-individual-particle basis. In all modes, linear calibration curves were obtained (provided that plasma loading was avoided). Per-cent relative standard deviation ranged between 3.1% and 4.2% for Ni in certified reference materials but was as high as 50% for heterogeneous soil samples. Tungsten emission signals from refractory tungsten carbide powders were enhanced using mixed gases and by modifying the chemical environment of the ICP using SF6. Furthermore, when coupled with high-speed data acquisition, PSI brought unique capabilities to ICP–AES for homogeneity studies from individual ng-weight particles and for the determination of particle size distributions. Overall, it was concluded that PSI is an attractive alternative to powder sample introduction systems described in the literature.  相似文献   

2.
A thermospray nebulizer was used as a sample introduction device for microwave plasma torch (MPT) atomic emission spectrometry (AES). Experimental parameters, including the power supplied to the MPT, the flow rates of support and carrier gases, the observation height, the sample uptake rate, the thermospray working temperature, the temperature of the aerosol spray chamber and cooling water were optimized. Under optimum conditions, the relative standard deviation (RSD) of 10 measurements for 21 elements is in the range 0.3–2.0%. The detection limits were improved in comparison with the ultrasonic nebulizer as sample introduction technique for MPT–AES. The inclusion of 20% methanol into the MPT showed there is no effect on the stability of MPT discharge. The technique can thus be held to have the potential for interface to reverse-phase HPLC systems.  相似文献   

3.
研究了用微波等离子体炬原子发射光谱法(MPT-AES)测定催化剂中铜和钠含量的方法. 考察了测定铜和钠的实验参数, 选择了测定的最佳条件, 并考察了共存离子的干扰情况. 催化剂使用压力溶弹处理, 并用标准加入法来消除基体干扰. 实验结果表明, 铜和钠的检出限分别为2.0、 4.2 μg/L, 方法的RSD均小于2.2%, 线性范围分别为0.01~12.0 mg/L和0.02~8.0 mg/L. 样品测定的RSD均小于2.9%, 加标回收率均在96.1%~102%之间.  相似文献   

4.
A typical electrothermal vaporization (ETV) using a tantalum was built for low-pressure ICP-AES. The analytical performance of the ETV was tested and compared with that of a PFA pneumatic nebulizer with a double membrane desolvator (DMD). The limits of detection of the ETV were obtained in the range of 3.4 ng to 758 ng for Zn, Cu, Co, Fe, and Mg, while those of the PFA nebulizer were in the range of 53 ppb to 286 ppb. A relative standard deviation (RSD) of 4.3 - 8.5% for ETV was obtained, while 2.15 - 6.84% RSD was found for DMD.  相似文献   

5.
This study deals with the behaviour of a microwave desolvation system (MWDS) with acid solutions in inductively coupled plasma atomic emission spectrometry. Hydrochloric, nitric, sulphuric and perchloric acids at different concentrations (up to 0.6 mol l−1) have been tested. Sample uptake rate (Ql) was also varied. The parameters evaluated for each variable were analyte and solvent transport rates and emission intensity. The combination of low acid concentrations (0.05–0.1 mol l−1) and low liquid flows (0.4 ml min−1) leads to the highest analyte transport rate and emission signal and to the lowest solvent transport rate. For Ql higher than 1.9 ml min−1, the use of an impact bead is advisable. Among the acids tested, sulphuric and perchloric acids give rise to higher emission intensities than hydrochloric acid and nitric acid. Nonetheless, the limits of detection (LODs) obtained with the MWDS are about the same magnitude irrespective of the solution employed. The LODs reached when using the MWDS are similar to those obtained with a desolvation system based on infrared heating of the aerosol.  相似文献   

6.
A trace amount of carbon was determined by atmospheric-pressure helium microwave induced plasma atomic emission spectrometry (He-MIP-AES) with gas-phase sample introduction technique. This method was applied for the generation of a continuous flow of carbon dioxide by the acidification of carbonate ion and hydrogen carbonate ion for the determination of carbon. The generated carbon dioxide was separated from the solution by a simple gas-liquid separator, dried with a desiccant and swept into the MIP with helium carrier gas for analysis. Of the acids and drying agents investigated, hydrochloric acid for acidification and anhydrous calcium chloride as a desiccant were found to be the most appropriate for the generation of carbon dioxide. Under the optimized experimental conditions, the best attainable detection limits at C (I) 193.09 and C (I) 247.86 nm lines were 7.89 and 8.10 microg/l with linear dynamic ranges of 100 to 10,000 and 100 to 20,000 microg/l for carbon, respectively. The presence of many diverse elements and ions was found to cause a more or less depressing interference by the proposed technique. However, no interference was observed from the following elements and ions: Ca, K, Rb, Br-, Cl-, F- and I-. Finally, the present method has been applied to the determination of carbon in several water samples.  相似文献   

7.
本文采用国产部件组装了一套ETV-ICP-AES仪器体系,对装置的连接及操作参数进行优化。深入系统地考察了分析物的蒸发过程和传输过程,提出了难熔元素的蒸发和传输机理。研究了ETV-ICP-AES中基体效应,提出了以聚四氟乙烯为氟化剂,氟化辅助ETV-ICP-AES测定难熔元素的新方法,应用于环境和生物标样中痕量元素分析,获得满意结果。  相似文献   

8.
A flat sheet membrane desolvator (FSMD) was used to extend the applicability of a 120 W helium microwave induced plasma (He-MIP) to elemental analysis of organic-solvent-based samples and element selective liquid chromatographic detection. With the FSMD on-line, methanol could be nebulized with a sample flow rate of 1.5 ml/min and a carrier gas flow rate of 1.2 l/min without extinguishing the plasma. Under these conditions, applying desolvator countercurrent gas flows in the range 0–8 l/min restored of the original pink color of the pure helium MIP from the bluish-green caused by methanol. Significant reductions in the emission intensities of C2 species at 436.5, 473.7, 512.9, and 563.6 nm were observed with the application of the FSMD. The intensities of chlorine analyte emission lines at 479.5, 481.0 and 481.9 nm increased with increasing countercurrent gas flow rates and reached a maximum intensity with a flow rate of 5.0 l/min. Detection limits for Cl and Pb were 2.1 and 0.1 ppm using a 1 m focal length monochromator. Other elements and solvent combinations were also examined. Element selective liquid chromatographic detection was preliminarily examined by monitoring 2,6-dichlorobenzene and 5,7-dichlorohydroxyquinoline at the 479.5 nm Cl atomic emission line. Chlorine detection limits in the 3–7 μg range (70–190 ng/s) were obtained.  相似文献   

9.
A novel magnetically excited microwave plasma emission source was developed and tested. Unlike previous microwave plasma sources which couple energy from the microwave electric field, this source couples energy from the magnetic field. The resultant plasma shape allows easy entrainment of wet sample aerosol, such as is produced by a conventional inductively coupled plasma (ICP) nebulizer and spray chamber, into the core of the plasma. Plasma support gas can be either nitrogen or air although better sensitivity is achieved using nitrogen. Good stability of operation was observed for both aqueous and organic solvents over a wide range of sample flows. The measured performance when used as a spectroscopic source in conjunction with an echelle polychromator showed detection limits approaching those of commercial ICP sources.  相似文献   

10.
研究了由Okamoto腔产生的大功率微波诱导空气等离子体的分析性能以及用该等离子体直接有机溶液进样测定有机溶剂或含有大量有机溶剂的废水中的金属污染物的可行性。用本方法测定了几种工业废水中的金属污染物,并与原子吸收光谱法的测定结果进行了比较。  相似文献   

11.
Sulphuric/nitric acid digestion of the bone precedes introduction of the diluted digest into a helium microwave-induced plasma via a tantalum electrothermal vaporizer. Atomic emission is measured at the Ni I 352.454-nm and Pb I 405.781-nm lines. Detection limits (aqueous solution) are 1.1 × 10?10 g Ni and 8 × 10?11 g Pb. The technique was applied to the analysis of IAEA H-5 animal bone reference material.  相似文献   

12.
The results obtained in the evaluation of the thermospray nebulizer for the introduction of organic solutions in atomic spectrometry are described. To this end, the influence of the nebulization variables (i.e., liquid flow, control temperature and inner diameter of the capillary) and of the nature of the solvent on the fraction of solvent vaporized, on the drop size distribution of the primary aerosol, on the rates of analyte and solvent transport to the atomization cell and on the analytical signal has been studied. Experimental fraction of solvent vaporized values obtained under different nebulization conditions are reported for the first time. The results show that the characteristics of the aerosol generated strongly depend on the nebulization variables since they determine the amount of energy available for surface generation. The median of the volume drop size distribution of the primary aerosol decreases when the control temperature or the liquid flow is increased or when the inner diameter of the capillary is decreased. As regards the physical properties of the solvent, the so-called expansion factor (i.e., the volume of vapour produced per unit volume of liquid solvent) is the most influential. Surface tension and viscosity are much less significant here than in ordinary pneumatic nebulization. The volatility of the solvent and the characteristics of the primary aerosol determine the solvent transport efficiency which reaches values close to 100% in many cases. The analytical signal is mainly determined by the analyte transport rate, although a severe negative effect appears which is related to the high solvent load to the flame. Due to this fact, the use of organic solvents instead of water in thermospray nebulization for Flame Atomic Absorption Spectrometry does not provide clear advantages, at least without desolvation. A new modified Nukiyama-Tanasawa equation has been presented and evaluated in order to predict the Sauter mean diameter of the thermal aerosols. The results show that, under the conditions tested, this equation can not be applied to predict the characteristics of the primary aerosols generated with this type of nebulizer.  相似文献   

13.
A new method for antimony determination in soils is proposed. It is based on the chemical vapor generation of Sb(III) with bromide, after a reaction in sulfuric acid media and transport of the gaseous phase into an inductively coupled plasma for atomic emission spectrometry. The experimental variables influencing the method were delimited by experimental design and the most important were finally optimized by the modified Simplex method. In optimized conditions the method involves the reaction of 579 microl concentrated sulfuric acid with 120 microl 5% w/v KBr and 250 microl antimony solution. Measurement of antimony emission intensity at 217.581 nm provides a method with an absolute detection limit of 3.5 ng and a precision (RSD) of 5.8% for the injection of five replicates of 175 ng Sb(III) (250 microl of 0.7 microg ml(-1) solution). The interference of common anions and cations on the antimony signal was evaluated. A 21% Sb(III) volatilization efficiency was calculated from the mean of six experiments at optimum conditions. The accuracy of the methodology was checked by the analysis of one standard reference soil after acid decomposition heating in a microwave oven.  相似文献   

14.
A new method for inductively coupled plasma atomic emission spectrometry (ICP-AES) determination of trace Sc and Y, based on gaseous compound introduction into the plasma as their thenoyltrifluoroacetone (TTA) complexes by electrothermal vaporization was developed. Using the reagent TTA as chemical modifier can not only enhance the analytical signals, but also reduce the vaporization temperature. At a temperature of 1,000 °C the trace Sc and Y can be vaporized completely into ICP. The factors affecting the formation of the chelate and its vaporization behavior, such as drying time, vaporization temperature/time, reaction medium and the amount of TTA, were investigated in detail. Under the optimized conditions (drying temperature/time 100 °C/10 s, vaporization temperature/time 1,000 °C/4 s), the limits of detection for Sc and Y were 19 pg and 34 pg (3), respectively, and the relative standard deviations for Sc and Y were 4.2% (c Sc=0.2 g mL–1; n=7) and 2.6% (c Y=0.5 g mL–1; n=7). The linear ranges of the calibration graphs cover three orders of magnitude. The method was applied to the analysis of the biological reference materials (GBW 07602, bush branches and leaves; GBW 07604, poplar leaves), and the results obtained were in good agreement with the certified values.  相似文献   

15.
Based on the formation of a volatile 1-(2′-pyridylazo)-2-naphthol (PAN) chelate, a novel method was described for the determination of trace ytterbium by electrothermal vaporization (ETV)-inductively coupled plasma atomic emission spectrometry (ICP-AES). It was found that in the presence of PAN, the trace Yb was quantitatively vaporized from a graphite furnace into ICP at a low temperature of 1100 °C. The main factors affecting the formation and vaporization of the Yb-PAN chelate were investigated in detail. Under the optimized conditions, the 3σ detection limit of Yb for this method was 0.4 ng ml−1 and the relative standard deviation (R.S.D.) for 0.1 μg ml−1 Yb was 3.7% (n=9, v=10 μl). The linear range of calibration spanned three orders of magnitude. The content of Yb in the standard reference material (shrub, GBW 07603) determined by the proposed method was in good agreement with the certified value.  相似文献   

16.
Jin Q  Zhang H  Yang W  Jin Q  Shi Y 《Talanta》1997,44(9):1605-1614
An electrothermal vaporization (ETV) sample introduction device tantalum filament was combined with microwave plasma torch atomic emission spectrometry (MPT-AES) for determination of several trace elements. Some operating parameters of the system were optimized. The effects of easily ionized elements (EIEs) on the emission intensities of the tested elements were studied in detail. It was revealed that there was no interference resulting from small amount of sample matrix; while with the existence of large amount of sample matrix, the method of standard addition could be used to determine trace elements in samples. So, no modifier was required in this method. The results indicated that ETV-MPT-AES not only has the advantage of micro sample consumption (a volume of 3 mul for each injection), but also offers high sensitivities for the determination of Ag, Au, Ge, Pb, Sn and Te as compared with those obtained with pneumatic nebulization (PN) MPT-AES.  相似文献   

17.
In the present work electrothermal vaporization (ETV) was used in both inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (OES) for sample introduction of solution samples. The effect of (Pd + Mg)-nitrate modifier and CaCl2 matrix/modifier of variable amounts were studied on ETV-ICP-MS signals of Cr, Cu, Fe, Mn and Pb and on ETV-ICP-OES signals of Ag, Cd, Co, Cu, Fe, Ga, Mn and Zn. With the use of matrix-free standard solutions the analytical curves were bent to the signal axes (as expected from earlier studies), which was observed in the 20–800 pg mass range by ICP-MS and in the 1–50 ng mass range by ICP-OES detection. The degree of curvature was, however, different with the use of single element and multi-element standards. When applying the noted chemical modifiers (aerosol carriers) in microgram amounts, linear analytical curves were found in the nearly two orders of magnitude mass ranges. Changes of the CaCl2 matrix concentration (loaded amount of 2–10 μg Ca) resulted in less than 5% changes in MS signals of 5 elements (each below 1 ng) and OES signals of 22 analytes (each below 15 ng). Exceptions were Pb (ICP-MS) and Cd (ICP-OES), where the sensitivity increase by Pd + Mg modifier was much larger compared to other elements studied. The general conclusions suggest that quantitative analysis with the use of ETV sample introduction requires matrix matching or matrix replacement by appropriate chemical modifier to the specific concentration ranges of analytes. This is a similar requirement to that claimed also by the most commonly used pneumatic nebulization of solutions, if samples with high matrix concentration are concerned.  相似文献   

18.
Cadmium in polyethylene was determined by both inductively coupled plasma atomic emission spectrometry (ICP-AES) and atomic absorption spectrometry (AAS) with continuous-flow gas-phase sample introduction in a reaction medium of ascorbic acid. In the presence of mixture of cobalt and thiourea in the ascorbic acid solution, the sensitivities by both ICP-AES and AAS for cadmium were greatly enhanced. The gaseous cadmium species was phase-separated in a gas–liquid separator and directed via a stream of argon carrier gas to an inductively coupled plasma and an electrically heated quartz tube atomizer (QTA) for atomic spectrometry. Under the optimized experimental conditions, the best attainable detection limits at Cd I 228.802 nm line were 1.3 and 0.017 ng/ml with linear dynamic ranges of 10–500 ng/ml and 0.1–1 ng/ml in concentrations by ICP-AES and QTA-AAS, respectively. The instrumental precisions expressed as the relative standard deviation (R.S.D.) from ten replicate measurements of 50 and 1 ng/ml cadmium by ICP-AES and QTA-AAS were 5.6% and 3.2%, respectively. With the use of ICP-AES and QTA-AAS with gas-phase sample introduction method, six- and 200-fold improvements in detection limits for cadmium were obtained in comparison with their conventional solution nebulization methods, respectively. After the effects of several diverse elements on the determination of cadmium by ICP-AES and QTA-AAS with the present gas-phase sample introduction systems were examined, these methods were applied to the determination of low concentrations of cadmium in polyethylene. The results obtained by the present method were in good agreement with the certified values.  相似文献   

19.
A new sample introduction device has been designed in order to differentiate between the effects of the aerosol production and its following desolvation on analytical performances of an inductively coupled plasma optical spectrometer. This research tool allows to easily switch between the pneumatic and ultrasonic aerosol generation mode and to use a joint desolvation chamber. In this way, a real comparison between aerosol production systems may be attained and the influence of aerosol generation process on analytical figures clearly distinguished from that of the desolvation process. In this work, the separate effects of the aerosol generation and desolvation processes on analytical sensitivity and tolerance towards matrix effects have been investigated. Concerning sensitivity, it was found that both the processes play an important role in determining emission intensities, being the increase in sensitivity due to desolvation higher than that due to the improved aerosol generation efficiency. Concerning the matrix effects, a predominant role of the desolvation system was found, while the influence of the aerosol generation mode was much less important. For nitric acid, the decreasing effect was mitigated by the presence of a desolvation system, due to partial removal of the acid. On the contrary, the depressive effect of sulfuric acid was enhanced by the presence of a desolvation system, due to degradation of the solvent removal efficiency and to further decrease in the analyte transport rate caused by clustering phenomena. Concerning the interferences due to sodium and calcium, a depressive effect was observed, which is enhanced by desolvation.  相似文献   

20.
Akinbo OT  Carnahan JW 《Talanta》1997,45(1):137-146
Results obtained from a preliminary investigation of the performance of a flat sheet membrane desolvator (FSMD) utilizing dual hydrophobic polypropylene membranes with an average pore size of 0.05 mum and a 50 +/- 5 mum thickness are reported. The membranes have a desolvation area of 241 cm(2). The volume-to-surface area ratio is 0.3 cm. Using the FSMD with an ultrasonic nebulizer (USN), aqueous solvent desolvation efficiencies of greater than 99.9% were obtained at all nebulizer gas flow rates investigated (0.8, 1.2, and 1.8 l min(-1)). This efficient desolvation occurred when the countercurrent gas flow rate was equal to or slightly greater than the applied nebulizer gas flow rate. Under these conditions preconcentration factors of 18, 44, and 590 were observed with flows of 0.8, 1.2 and 1.8 l min(-1), respectively. Operating with countercurrent gas flow rates much higher than the nebulizer gas flow rates leads to a significant reduction in analyte flux, thus increasing detection limits. Depending on the nebulizer and countercurrent gas flow rate conditions, the FSMD contributed between 10-40% to the overall analyte loss in the system. The lowest detection limit observed for aqueous copper with the USN-FSMD system is 0.4 ppb at nebulizer and countercurrent gas flow rates of 1.2 and 1.4 l min(-1), respectively. At this nebulizer gas flow rate, replacing the FSMD in the system with a commercial tubular membrane desolvator, MDX100, gave a lowest Cu detection limit of 0.2 ppb at a countercurrent gas flow rate of 1.2 l min(-1). These detection limits represents improvements over the 0.7 and 8 ppb obtained with USN and pneumatic nebulization, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号