首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this study, microwave-induced combustion (MIC) of extra-heavy crude oil is proposed for further chlorine and sulfur determination by inductively coupled plasma optical emission spectrometry (ICP OES). Combustion was carried out under oxygen pressure (20 bar) in quartz vessels using ammonium nitrate (50 µl of 6 mol l− 1 solution) as ignition aid. Samples were wrapped with polyethylene film and placed on a quartz holder positioned inside the quartz vessels. The need for an additional reflux step after combustion and the type and concentration of absorbing solution (water, 0.02 to 0.9 mmol l− 1 H2O2, 10 to 100 mmol l− 1 (NH4)2CO3 or 0.1 to 14 mol l− 1 HNO3) were studied. The influence of sample mass, O2 pressure and maximum pressure attained during the combustion process were investigated. Recoveries from 92 to 102% were obtained for Cl and S for all absorbing solutions. For comparison, Cl and S determination was also performed by ion chromatography (IC) using 25 mmol l− 1 (NH4)2CO3 as absorbing solution. Using MIC with a reflux step the agreement was better than 95% for certified reference materials of similar composition (crude oil, petroleum coke, coal and residual fuel oil). Microwave-assisted digestion and water extraction in high pressure closed vessels were also evaluated. Using these procedures the maximum recoveries were 30 and 98% for Cl and S, respectively, using microwave-assisted digestion and 70% for Cl and less than 1% for S by water extraction procedure. Limits of detection by ICP OES were 12 and 5 µg g− 1 for Cl and S, respectively, and the corresponding values by IC were 1.2 and 8 µg g− 1. Using MIC it was possible to digest simultaneously up to eight samples resulting in a solution suitable for the determination of both analytes with a single combustion step.  相似文献   

2.
Continuous flow (CF) chemical hydride generation (CHG) and electrochemical hydride generation (ECHG) directly coupled to a novel 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma exiting a microstrip wafer has been developed for the emission spectrometric determination of As and Sb using a miniaturized optical fiber spectrometer and a CCD-array detector. The experimental conditions for both procedures were optimized with respect to the relative net intensities of the As I 228.8 nm and Sb I 252.8 nm lines and their signal-to-background intensity ratios. Additionally, the susceptibility to interferences from Cd, Co, Cr, Cu, Fe, Ni, Pb and Zn and other hydride-forming elements in the determination of As and Sb using the CHG and ECHG techniques was investigated in detail. Under the optimized conditions, it was found that ECHG is more prone to interferences compared to CHG. The detection limits (3σ) of As (6 ng mL−1) and Sb (7 ng mL−1) obtained for the ECHG-MSP-OES method are about three times lower than in the case of the CHG-MSP-OES method due to a two-fold lower amount of H2 introduced into the MSP in case of the ECHG, resulting in a better plasma stability and reduced background level. The linearity ranges for both calibration curves to a concentration of up to 5 μg mL−1 and a precision between 2% and 7% (2 μg mL−1 and 0.050 μg mL−1 of As and Sb, respectively) were found for both methods. The developed ECHG-MSP-OES method was validated for As through the analysis of a certified coal fly ash standard reference material (NIST SRM 1633a) after sample dissolution. The derived concentration (140 ± 8 μg g−1) was found to agree well with the certified data (145 ± 15 μg g−1). The method was also successfully applied to the analysis of both a galvanic bath sample, which contained Sb and was spiked with As, and a tap water sample spiked with both analytes. Recovery rates of 99-101% and a Sb concentration of 6.6 μg mL−1 in the galvanic bath sample were revealed. The latter value showed a good agreement with the data obtained from ICP-OES analysis, which was also used for validation purpose.  相似文献   

3.
The role played by K3Fe(CN)6 (0.08 or 1.5 g l− 1) in producing strong enhancement factors in the generation efficiency of plumbane in the reaction of NaBH4 (10 or 40 g l− 1) with Pb(II) (50 μg l− 1) in 0.1 M HCl solution, was investigated by using continuous flow chemical vapor generation coupled with atomic fluorescence spectrometry (CF-CVG-AFS). Different mixing sequences and reaction times of reagents were tested using different chemifold setups. Part of CF-CVG-AFS experiments were performed using the on-line, delayed addition of Pb(II) to a K3Fe(CN)6 + NaBH4 reaction mixture. Kinetic calculations estimating the concentration of K3Fe(CN)6 remaining in the K3Fe(CN)6 + NaBH4 reaction mixture before it merged with Pb(II) solution were also performed. Batch experiments measuring the amount of hydrogen evolved (pressure of H2 vs time) and pH variation during K3Fe(CN)6 + NaBH4 + HCl reaction were performed in order to have a correct estimation of the concentration of K3Fe(CN)6 remaining in the reaction system. The comparison of CF-CVG-AFS experiments with kinetic calculations indicates that strong enhancement factors of plumbane generation can be obtained without any interaction of K3Fe(CN)6 with Pb(II). The key role of K3Fe(CN)6 is recognized in its reaction with NaBH4 to give “special” borane complex intermediates, which are highly effective in the generation of plumbane from Pb(II).  相似文献   

4.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

5.
Tang B  Zhang L  Xu KH 《Talanta》2006,68(3):876-882
A new kind of near-infrared fluorescence agent, tricarbochlorocyanine dye (Cy.7.Cl), had been synthesized in house and used for near-infrared spectrofluorimetric determination of hydrogen peroxide (H2O2) by flow injection analysis (FIA) for the first time. The oxidation reaction of Cy.7.Cl with H2O2 occurred under the catalysis of horseradish peroxidase (HRP) and it was studied in detail. The possible reaction mechanism was discussed. Under optimal experimental conditions, fluorescence from Cy.7.Cl displayed excitation and emission maxima (ex/em) at 780 and 800 nm, respectively. The two linear working ranges were 1.86 × 10−7 to 4.11 × 10−7 mol L−1 and 4.11 × 10−7 to 7.19 × 10−6 mol L−1, respectively. The detection limit was 5.58 × 10−8 mol L−1 of H2O2. The effect of interferences was studied. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater, serum and plant samples.  相似文献   

6.
A gas diffusion-flow injection system was developed for the determination of carbon dioxide in gaseous samples. The calibration was based on the use of either gaseous carbon dioxide or aqueous sodium carbonate standards. Gaseous carbon dioxide samples and gaseous or aqueous standards were injected directly into a donor stream of 1.0×10−4 M H2SO4. In the gas diffusion unit, carbon dioxide diffused through a PTFE membrane into an acceptor stream containing a mixed acid/base indicator. The absorbance of the acceptor stream was monitored spectrophotometrically at 554 nm. The calibration plot was linear over the range of 5.00×102 to 1.27×104 μl l−1 with a sample throughput of 28 h−1 and 3.2% R.S.D. ([CO2]=2.37×103 μl l−1, n=12). The detection limit was determined as 2.50×102 μl l−1. The flow system was successfully applied to the analysis of several natural gaseous samples and the headspace of milk containers during storage. The flow injection results were found to be statistically indistinguishable at the 95% confidence level from those obtained by gas chromatography using thermal conductivity detection.  相似文献   

7.
Monser L  Adhoum N  Sadok S 《Talanta》2004,62(2):389-394
A novel gas diffusion-flow injection method has been developed for the rapid and sensitive determination of total inorganic carbon (TIC) in water. The method is based on the diffusion of CO2 across gas permeable membrane from a donor stream containing 0.1 M HCl to an acceptor stream of sodium acetate (10−5 mol l−1 and pH 10). The CO2 trapped in the acceptor stream passes through an electrochemical flow cell contains a tungsten oxide wire and a silver/silver chloride electrode, where it was sensitively detected. The parameters affecting the sensitivity of the electrode such as buffer concentration, pH, flow rate and injected volume were studied in detail. The electrode response was linear in the concentration range from 5 to 100 μg ml−1 CO32− with a correlation coefficient (R2) of 0.998. Precision (R.S.D.) was 1.42% for 20 μg ml−1 standard solution of CO32− (n=10). The detection limit was 0.20 μg ml−1 CO32−. The method was evaluated by the injection of real natural water samples and an average recovery of 100.1% was obtained. The sampling rate was 30 samples h−1. The method is simple, feasible with satisfactory accuracy and precision and thus could be used for monitoring TIC in water.  相似文献   

8.
9.
Hsiang MC  Sung YH  Huang SD 《Talanta》2004,62(4):791-799
A simple method was developed for the direct and simultaneous determination of arsenic (As), manganese (Mn), cobalt (Co), and nickel (Ni) in urine by a multi-element graphite furnace atomic absorption spectrometer (Perkin-Elmer SIMAA 6000) equipped with the transversely heated graphite atomizer and longitudinal Zeeman-effect background correction. Pd was used as the chemical modifier along with either the internal furnace gas or a internal furnace gas containing hydrogen and a double stage pyrolysis process. A standard reference material (SRM) of Seronorm™ Trace Elements in urine was used to confirm the accuracy of the method. The optimum conditions for the analysis of urine samples are pyrolysis at 1350 °C (using 5% H2 v/v in Ar as the inter furnace gas during the first pyrolysis stage and pure Ar during the second pyrolysis stage) and atomization at 2100 °C. The use of Ar and matrix-free standards resulted in concentrations for all the analytes within 85% (As) to 110% (Ni) of the certified values. The recovery for As was improved when mixture of 5% H2 and 95% Ar (v/v) internal furnace gas was applied during the first step of a two-stage pyrolysis at 1350 °C, and the found values of the analytes were within 91-110% of the certified value. The recoveries for real urine samples were in the range 88-95% for these four elements. The detection limits were 0.78 μg l−1 for As, 0.054 μg l−1 for Mn, 0.22 μg l−1 for Co, and 0.35 μg l−1 for Ni. The upper limits of the linear calibration curve are 60 μg l−1 (As); 12 μg l−1 (Mn); 12 μg l−1 (Co) and 25 μg l−1 (Ni), respectively. The relative standard deviations (R.S.D.s) for the analysis of SRM were 2% or less. The R.S.D.s of a real urine sample are 1.6% (As), 6.3% (Mn), 7.0% (Ni) and 8.0% (Co), respectively.  相似文献   

10.
Terbium sensitized fluorescence was used as a post-column detection system to develop a simple, sensitive and rapid high-performance liquid chromatographic method for the simultaneous determination of catecholamines norepinephrine (NE), epinephrine (E) and dopamine (DA).Catecholamines were separated by an ion-pair reversed-phase chromatography on a BDS-Hypersil analytical column with a mobile phase of methanol and 50 mmol l−1 acetate buffer (pH 4.7) containing 1.1 mmol l−1 SOS and 0.11 mmol l−1 EDTA (15+85 v/v).Catecholamines and the internal standard (3,4-dihydroxybenzylamine, DHBA) were post-column derivatized by the addition to the eluent of an alkaline solution containing a stoichiometric mixture of terbium(III) chloride and EDTA. Fluorescence detection (λex=300 nm, λem=545 nm) is based on the sensitization of terbium ion fluorescence after complexation with catecholamines.The chemical compatibility between the eluent and the post-column reagent was studied and the analytical characteristics of the method were established. Detection limits found were 1.0×10−8, 4.0×10−8 and 7.0×10−8 mol l−1 for NE, E and DA, respectively. The method has been successfully applied to the determination of catecholamines in urine samples after solid-phase extraction (SPE) pre-treatment. Recoveries from urine spiked with NE (4.0×10−7, 2.0×10−6 and 4.0×10−6 mol l−1), E (8.2×10−8, 4.1×10−7 and 8.2×10−7 mol l−1) and DA (1.0×10−6, 5.0×10−6 and 1.0×10−5 mol l−1) varied from 98 to 100% (mean=99.3%), from 106 to 107% (mean=106.3%) and from 98 to 101% (mean=99.3%), respectively. The between-run precision (relative standard deviation, R.S.D.) for the method for three urine samples at different concentration levels of each catecholamine varied from 3.6 to 7.0%.  相似文献   

11.
A modified thiocyanate method without extraction by using rhodamine 6G as a secondary ligand was developed. Molybdenum in 1.0×10−2 M HCl, after the addition of ascorbic acid, was heated for 10 min in a 90 °C water bath for reduction. Suitable amounts of glycerine, Triton X-100, rhodamine 6G solutions and 2+1 (v/v) 9 M H2SO4+3 M KHSO4 were added in this order. This solution was allowed to cool to room temperature and the absorbance at 570 nm was measured against a reagent blank 45 min after the addition of thiocyanate solution and the second aliquot of Triton X-100 solution. The complex was stable for at least 4 h, the order of reagent addition was important, and thiocyanate should be in large excess. Beer’s law was obeyed over the range 0.9×10−6 to 1.1×10−5 M Mo with the molar absorptivity being 1.1×105 l mol−1 cm−1. The R.S.D. for the determination of 0.7 mg Mo l−1 was 1.83% (n=8). Possible interferences of various cations and anions on molybdenum determination were studied. The proposed method was applied to the determination of molybdenum in a dental alloy, Wiron 99.  相似文献   

12.
Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH4 concentration, the concentration of HCl, HNO3 and H2SO4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2–20 μg ml− 1. The microstrip plasma tolerated the introduction of 4.2 ml min− 1 of H2 in the Ar working gas, which corresponded to an H2/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the Hβ line was of the order of 5500 K and 1.50 · 1014 cm− 3, respectively. Detection limits (3σ) of 18 ng ml− 1 for As and 31 ng ml− 1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml− 1 level in a galvanic bath solution containing 2.5% of NiSO4. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g− 1 and a value of 144 ± 4 μg g− 1 was found.  相似文献   

13.
A novel conjugation-elongated bis(ethylenedithio)tetraselenafulvalene (BETS) type donor, 2,5-bis(4,5-ethylenedithio-1,3-diselenol-2-ylidene)-2,3,4,5-tetrahydrothiophene (BEDT-HBDST) and its magnetic and non-magnetic anion salts, (BEDT-HBDST)2MX4 (MX4=FeCl4, GaCl4, FeBr4 and GaBr4), were prepared. These four salts are isostructural and belong to the space group of P2/c. They showed semiconducting behavior with small activation energies (59-64 meV). The band structures of these salts are quasi one-dimensional and there is a midgap between the upper band and the lower band, since the degree of dimerization is significant in the stacking direction. The MX4 ions are located between the donor columns and near to the ethylenedithio moieties of the donor molecules. The magnetic susceptibilities of the FeCl4 and FeBr4 salts follow the Curie-Weiss law with Curie constants of 4.6 and 4.8 emu K mol−1 (sum of the spins of S=5/2 and S=1/2) and negative Weiss temperatures of θ=−1.2 and −4.9 K, respectively, revealing a weak antiferromagnetic interaction of 3d spins of the FeCl4 and FeBr4 anions. The Fe?Fe (6.66-7.60 Å), Cl?Cl (4.81-4.82 Å) and Br?Br (4.74-4.77 Å) distances in the crystal structures of these salts are significantly long. Therefore, the direct magnetic interaction between the 3d spins of the nearest neighboring Fe3+ ions appears to be not readily accessible.  相似文献   

14.
Filik H  Hayvali M  Kiliç E  Apak R  Aksu D  Yanaz Z  Cengel T 《Talanta》2008,77(1):103-109
2,2′-(1,4-Phenylenedivinylene)bis-8-hydroxyquinoline (PBHQ), a highly sensitive reagent used for the colorimetric determination of p-aminophenol (PAP), was successfully immobilised on XAD-7 and coupled with optical fibres to investigate a sensor-based approach for determining p-aminophenol. The solid-state sensor is based on the reaction of PAP with PBHQ in presence of an oxidant to produce an indophenol dye. The reflectance measurements were carried out at a wavelength of 647 nm since it yielded the largest divergence different in reflectance spectra before and after reaction with the analyte. The linear dynamic range of PAP was found within the concentration range of 0.1-2.18 mg l−1 with its LOD of 0.02 mg l−1. The sensor response from different probes (n = 7) gave a R.S.D. of 4.4% at 1.09 mg l−1 PAP concentration. The response time of the optical one-shot sensor was 5 min for a stable solution. As this PAP sensor is irreversible, a fresh sensor has to be used for each measurement. All the experimental parameters were optimized for the determination of PAP. Using the optical sensing probe, PAP in pharmaceutical wastewater and paracetamol was determined. The effect of potential interferences such as inorganic and organic compounds was also evaluated. Potential on-site determination of PAP with such sensors can indirectly aid detection of organo-phosphorus nerve agents and pesticides in the field by inhibition of acetylcholine esterase-catalyzed hydrolysis of p-aminophenyl acetate to p-aminophenol.  相似文献   

15.
A sensitive and selective method was developed for the determination of traces of manganese in urine using on-line electrochemical preconcentration followed by flame atomic absorption spectrometry detection. A home made flow-through polypropylene cell (4.5 cm long × 0.8 cm diameter filled with glass marbles) with an effective inner volume of 0.5 ml containing a working and a counter electrode, both of glassy carbon and a Pt pseudo reference electrode was located in a flow injection manifold specially designed for the purpose of this work. The manganese was deposited from buffer solution of NH3/NH4Cl at pH 9.00 through an oxidizing process at a current of 400 mA during 7 min. A flow of HCl 0.1 mol l−1 at 4 ml min−1 through the cell, chemically dissolved the deposit. A small portion (15 μl) of the concentrate was introduced in a continuously flowing system by means of a timing device and was then carried to the detector for the manganese quantification. All electrochemical and spectroscopic variables as well as possible interferences in both systems were systematically studied. The relative standard deviations for ten consecutive measurements of manganese solutions of 2.0 and 20 μg l−1 were of 2.3 and 1.5%, respectively, while for a sample processed five times was less then 5%. The accuracy of the developed procedure was evaluated by adding known amounts of manganese standard to urine samples and following the whole procedure. Recoveries within the range 97.2-102.8% were obtained. To further prove the accuracy, a Seronorm Trace Elements in Urine, Batch 403125 sample with a reported concentration of 13 μg Mn l−1 was also analyzed. The experimental value obtained was of 12.7 ± 0.1 μg l−1, which does not differ significantly from the reported amount (p < 0.05). A preconcentration factor of 40, a linear range between 0.015 and 60 μg l−1 and a limit of detection of 15 ng l−1 permitted the determination of manganese in real urine samples from non-exposed subjects in the range 0.5-2.8 μg l−1.  相似文献   

16.
The use of aerosol produced in a nebulization chamber is proposed as an alternative to gas sample capture in flow systems. This paper describes the coupling of a sampling interface with a flow system, for in situ gas monitoring. Aspects related with the behavior of aerosol formation and gas solubilization in liquid drops are discussed. The method is applied to the determination of residual lime in acidic soils. Aliquots of 5.0 ml of 1.0 mol l−1 HCl were mixed with soil samples (1 g). The CO2 released from these samples was captured by a nebulized aerosol and determined conductivity. The analytical curve from 1.0×10−2 to 5.0×10−2 mol kg−1 CaCO3 was ploted applying the matrix matching approach. This proposition, allowed an increase in the sensibility with detection limit of 6.0×10−3 mol kg−1. The precision was good (R.S.D. <3%) for an analytical frequency of 22 determinations per hour. A fair agreement, at 95% confidence level, was found between the results from the proposed method and certified values of the investigated samples.  相似文献   

17.
Feng Li 《Talanta》2009,77(4):1304-1308
A simple and reliable one-pot approach was established for the development of a novel hydrogen peroxide (H2O2) biosensor based on in situ covalent immobilization of horseradish peroxidase (HRP) into biocompatible material through polysaccharide-incorporated sol-gel process. Siloxane with epoxide ring and trimethoxy anchor groups was applied as the bifunctional cross-linker and the inorganic resource for organic-inorganic hybridization. The reactivity between amine groups and epoxy groups allowed the covalent incorporation of HRP and the functional biopolymer, chitosan (CS) into the inorganic polysiloxane network. Some experimental variables, such as mass ratio of siloxane to CS, pH of measuring solution and applied potential for detection were optimized. HRP covalently immobilized in the hybrid matrix possessed high electrocatalytic activity to H2O2 and provided a fast amperometric response. The linear response of the as-prepared biosensor for the determination of H2O2 ranged from 2.0 × 10−7 to 4.6 × 10−5 mol l−1 with a detection limit of 8.1 × 10−8 mol l−1. The apparent Michaelis-Menten constant was determined to be 45.18 μmol l−1. Performance of the biosensor was also evaluated with respect to possible interferences. The fabricated biosensor exhibited high reproducibility and storage stability. The ease of the one-pot covalent immobilization and the biocompatible hybrid matrix serve as a versatile platform for enzyme immobilization and biosensor fabricating.  相似文献   

18.
Anion-exchange chromatography with inductively coupled plasma mass spectrometry (ICP-MS) is often used for the speciation of arsenic (As). In this work, either He or H2 was introduced to the octopole collision/reaction cell to eliminate chloride (Cl) interferences during As speciation by ICP-MS. Polyatomic species, 40Ar35Cl and 38Ar37Cl, which are formed in high chloride matrices interfere with the ICP-MS detection of 75As. These interferences were reduced or eliminated by introducing He or H2 to the collision/reaction cell, with some loss in sensitivity when compared to the standard mode (no gas). For example, the sensitivity of As(V) was 30.4 and 17.7% of that observed in standard mode when introducing He and H2, respectively. Chloride interference was completely eliminated using a flow rate of 3.0 mL min− 1 with H2 as a reaction gas with detection limits in the range of 0.3-0.6 μg L− 1. The developed method was applied to determination of arsenic species in waters containing high concentrations of chloride by following a simple procedure and without modification of the ICP-MS instrument.  相似文献   

19.
Sulphur containing compounds such as sodium thiosulphate (STS) and thioglycolic acid (TGA) inhibit the rate of cyanide substitution by nitroso-R-salt (NRS) in hexacyanoruthenate(II) catalysed by Hg(II) ions due to their strong binding tendencies with Hg(II) catalyst. This inhibitory effect of sodium thiosulphate and thioglycolic acid is used as the basis for their determination at micro levels. The reaction was followed spectrophotometrically at 525 nm (λmax of [Ru(CN)5NRS]3− complex) under optimised reaction conditions at 8.75 × 10− 5 M [Ru(CN)64−], 3.50 × 10− 4 M [NRS], pH 7.00 ± 0.02, ionic strength (µ) 0.1 M (KCl) and temp 45.0 ±0.1 °C. The modified mechanistic scheme is proposed to understand the inhibition caused by sulphur containing compounds (STS and TGA) on Hg(II) catalysed substitution of cyanide by NRS in [Ru(CN)6]4−. The range of analytical concentration of inhibitor depends upon two factors; the amount of Hg(II) catalyst present in the indicator reaction and the stability of the Hg(II)-inhibitor complex under consideration. Under optimum conditions STS and TGA have been determined in the range of 0.98-7.0 × 10− 6 M and 0.30-7.0 × 10− 6 M. The detection limits for STS and TGA were found to be 3.0 × 10− 7 M and 1.0 × 10− 7 M respectively.  相似文献   

20.
A poly(amidoamine) (PAMAM) dendrimer composite membrane with an excellent CO2/N2 separation factor was developed in-situ. The In-situ Modification (IM) method was used to modify the surface of commercial porous membranes, such as ultrafiltration membranes, to produce a gas selective layer by controlling the interface precipitation of the membrane materials in the state of a received membrane module. Using the IM method, a chitosan layer was prepared on the inner surface of a commercially available ultrafiltration membrane as a gutter layer, in order to affix PAMAM dendrimer molecules on the porous substrate. After chitosan treatment, the PAMAM dendrimer was impregnated into the gutter layer to form a PAMAM/chitosan hybrid layer. The CO2 separation performance of the resulting composite membrane was tested at a pressure difference of 100 kPa and a temperature of 40 °C, using a mixed CO2 (5 vol%)/N2 (95 vol%) feed gas. The PAMAM dendrimer composite membrane, with a gutter layer prepared from ethylene glycol diglycidyl ether and a 0.5 wt% chitosan solution of two different molecular weight chitosans, revealed an excellent CO2/N2 separation factor and a CO2 permeance of 400 and 1.6 × 10−7 m3 (STP) m−2 s−1 kPa−1, respectively. SEM observations revealed a defect-free chitosan layer (thickness 200 nm) positioned directly beneath the top surface of the UF membrane substrate. After PAMAM dendrimer treatment, the hybrid chitosan/PAMAM dendrimer layer was observed with a thickness of 300 nm. XPS analysis indicated that the hybrid layer contained about 20–40% PAMAM dendrimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号