首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laser-induced breakdown spectroscopy (LIBS) measurements were performed on bulk water solutions by applying a double-pulse excitation from a Q-Switched (QS) Nd:YAG laser emitting at 1064 nm. In order to optimize the LIBS signal, laser pulse energies were varied through changing of the QS trigger delays with respect to the flash-lamp trigger. We had noted that reduction of the first pulse energy from 92 mJ to 72 mJ drastically improves the signal, although the second pulse energy was also lowered from 214 mJ to 144 mJ. With lower pulse energies, limit of detection (LOD) for Mg in pure water was reduced for one order of magnitude (34 ppb instead of 210 ppb). In order to explain such a phenomenon, we studied the dynamics of the gas bubble generated after the first laser pulse through measurements of the HeNe laser light scattered on the bubble. The influence of laser energy on underwater bubble and plasma formation and corresponding plasma emission intensity were also studied by photographic technique. From the results obtained, we conclude that the optimal first pulse energy should be kept close to the plasma elongation threshold, in our case about 65 mJ, where the gas bubble has its maximum lateral expansion and the secondary plasma is still well-localized. The importance of a multi-pulse sequence on the LIBS signal was also analyzed, where the pulse sequence after the first QS aperture was produced by operating the laser close to the lasing threshold, with the consequent generation of relaxation oscillations. Low-energy multi-pulses might keep the bubble expansion large prior to the probing pulse, but preventing the formation of secondary weak plasmas in multiple sites, which reduces the LIBS signal. The short interval between the pre-pulses and the probing pulse is another reason for the observed LIBS signal enhancement.  相似文献   

2.
Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.  相似文献   

3.
Single and double pulse laser-induced breakdown spectroscopy (LIBS) was carried out on aluminum samples in air. In the case of double pulse excitation, experiments were conducted by using the same laser source operated at the same wavelength (1064 nm in most cases here presented). A lowering of the second pulse plasma threshold was observed, together with an overall enhancement in line emission for the investigated time delay between the two pulses (40–60 μs). The laser-induced plasma originated by a single and double pulse was investigated near ignition threshold with the aim to study possible dynamical mechanisms in different regimes. Currently available spectroscopic diagnostics of plasma, such as the line broadening and shift due Stark effects, have been used in the characterization in order to retrieve electron densities, while standard temperature measurements were based on Boltzmann plot. Plasma relevant parameters, such as temperature and electron density, have been measured in the plasma decay on a long time scale, and compared with crater shape (diameter and inferred volume). The comparison of double with single pulse laser excitation was carried out while keeping constant the energy per pulse; the influence of laser energy was investigated as well. Results here obtained suggest that use of the double pulse technique could significantly improve the analytical capabilities of LIBS technique in routine laboratory experiments.  相似文献   

4.
A novel laser-induced breakdown spectroscopy (LIBS)-based measurement method for metals in water is demonstrated. In the presented technology a small amount of sodium chloride is dissolved in the sample solution before spraying the sample into a tubular oven. After water removal monodisperse dry NaCl aerosol particles are formed where trace metals are present as additives. A single-particle LIBS analysis is then triggered with a scattering based particle detection system. Benefits are the highly increased metal concentration in the LIBS focal volume and the static NaCl-matrix which can be exploited in the signal processing procedure. Emitted light from the emerged plasma plume is collected with wide angle optics and dispersed with a grating spectrometer. In an aqueous solution, the respective limits of detection for zinc and lead were 0.3 ppm and 0.1 ppm using a relatively low 14 mJ laser pulse energy. Zn/Na peak intensity ratio calibration curve for zinc concentration was also determined and LIBS signal dependence on laser pulse energy was investigated.  相似文献   

5.
Pre-ablation dual-pulse LIBS enhancement data for copper, brass and steel using ns laser excitation are reported. Although large enhancements are observed for all samples, the magnitude of the enhancement is matrix dependent. Whereas all of the dual-pulse studies used ns laser excitation we see interesting effects when using ps and fs laser excitation for single-pulse LIBS. LIBS spectra of copper using 1.3 ps and 140 fs laser pulses show much lower background signals compared to ns pulse excitation. Also, the atomic emission decays much more rapidly with time. Because of relatively low backgrounds when using ps and fs pulses, non-gated detection of LIBS is shown to be very effective. The plasma dissipates quickly enough using ps and fs laser pulses, that high pulse rates, up to 1,000 Hz, are effective for increasing the LIBS signal, for a given measurement time. Finally, a simple near-collinear dual-pulse fiber-optic LIBS probe is shown to be useful for enhanced LIBS measurements.  相似文献   

6.
The influence of laser pulse duration on laser-induced breakdown spectroscopy (LIBS) calibration curves is investigated in the present work. Two Nd:YAG lasers providing pulses of 35 ps and 5 ns, respectively, both operating at 1064 nm, have been used to create plasmas on aluminium, manganese, iron, and silicon targets and on prepared stoichiometric samples of these metals in a matrix. The time-resolved, space-averaged plasma temperatures have been deduced using Boltzmann plots, while the electron number density has been determined from the broadening of spectral lines. The effect of laser pulse duration on the plasma characteristics is discussed, and comparisons are made with previously reported data measured under similar experimental conditions. The optimum experimental conditions (i.e., time delay, gate width, laser energy) have been determined for reliable use of LIBS for quantitative analysis for both pulse durations. For each of the metals of interest, calibration curves have been constructed for concentrations ranging up to 2%.  相似文献   

7.
Pre-ablation dual-pulse LIBS enhancement data for copper, brass and steel using ns laser excitation are reported. Although large enhancements are observed for all samples, the magnitude of the enhancement is matrix dependent. Whereas all of the dual-pulse studies used ns laser excitation we see interesting effects when using ps and fs laser excitation for single-pulse LIBS. LIBS spectra of copper using 1.3 ps and 140 fs laser pulses show much lower background signals compared to ns pulse excitation. Also, the atomic emission decays much more rapidly with time. Because of relatively low backgrounds when using ps and fs pulses, non-gated detection of LIBS is shown to be very effective. The plasma dissipates quickly enough using ps and fs laser pulses, that high pulse rates, up to 1000 Hz, are effective for increasing the LIBS signal, for a given measurement time. Finally, a simple near-collinear dual-pulse fiber-optic LIBS probe is shown to be useful for enhanced LIBS measurements. Received: 1 August 2000 / Revised: 2 November 2000 / Accepted: 8 November 2000  相似文献   

8.
A review of recent results on stand-off Laser-Induced Breakdown Spectroscopy (LIBS) analysis and applications is presented. Stand-off LIBS was suggested for elemental analysis of materials located in environments where any physical access was not possible but optical access could be envisaged. This review only refers to the use of the open-path LIBS configuration in which the laser beam and the returning plasma light are transmitted through the atmosphere. It does not present the results obtained with a transportation of the laser pulses to the target through an optical fiber. Open-path stand-off LIBS has mainly been used with nanosecond laser pulses for solid sample analysis at distances of tens of meters. Liquid samples have also been analyzed at distances of a few meters. The distances achievable depend on many parameters including the laser characteristics (pulse energy and power, beam divergence, spatial profile) and the optical system used to focus the pulses at a distance. A large variety of laser focusing systems have been employed for stand-off analysis comprising refracting or reflecting telescope. Efficient collection of the plasma light is also needed to obtain analytically useful signals. For stand-off LIBS analysis, a lens or a mirror is required to increase the solid angle over which the plasma light can be collected. The light collection device can be either at an angle from the laser beam path or collinear with the optical axis of the system used to focus the laser pulses on the target surface. These different configurations have been used depending on the application such as rapid sorting of metal samples, identification of material in nuclear industry, process control and monitoring in metallurgical industry, applications in future planetary missions, detection of environmental contamination or cleaning of objects of cultural heritage. Recent stand-off analyses of metal samples have been reported using femtosecond laser pulses to extend LIBS capabilities to very long distances. The high-power densities achievable with these laser pulses can also induce self-guided filaments in the atmosphere which produce LIBS excitation of a sample. The first results obtained with remote filament-induced breakdown spectroscopy predict sample analysis at kilometer ranges.  相似文献   

9.
Influence of time delay between two laser pulses on the LIBS (laser induced breakdown spectroscopy) signal inside liquids was investigated and the results are compared with data from literature. Plasma was produced by laser ablation (LA) of aluminum inside water and its emission after the second laser pulse was characterized by spectrally and time resolved detection. Light propagation through the vapor bubble formed by the first laser pulse was studied by measurements of beam scattering and transmission. Optical absorption by the evolving bubble is not significant, but its growth is accompanied by lowering of its refraction index nb with respect to surrounding liquid; this effect increases defocusing both of the incident beam and of the out-coming plasma radiation. Collection efficiency of the secondary plasma emission rapidly degrades with the cavity growth, but close to its full expansion the LIBS signal partially recovers through Snell's reflections at the liquid–vapor interface, which produce a bright spot close to the bubble center. Such a light redistribution allows detecting of the emission from external plasma volume, otherwise deflected out of the collection system. Except for strong line transitions from the main sample constituents, self-absorbed inside the high-pressure cavity, we observed the highest LIBS signal when sending the second pulse well before the bubble is fully expanded. Transitions of the pressure wave through the focal volume, formed by the first laser pulse and reflected from the cell's walls and sample back-plane, enhances the LIBS signal importantly. The measured lifetime of the secondary plasma rapidly decreases with the bubble expansion. Here, we also discuss the optimization of the optical collection system and some analytical aspects of double-pulse (DP) LIBS inside liquids.  相似文献   

10.
A double pulse-laser induced breakdown spectroscopy (DP-LIBS) was used to determine arsenic (As) concentration in 16 soil samples collected from 5 different mine tailing sites in Korea. We showed that the use of double pulse laser led to enhancements of signal intensity (by 13% on average) and signal-to-noise ratio of As emission lines (by 165% on average) with smaller relative standard deviation compared to single pulse laser approach. We believe this occurred because the second laser pulse in the rarefied atmosphere produced by the first pulse led to the increase of plasma temperature and populations of exited levels. An internal standardization method using a Fe emission line provided a better correlation and sensitivity between As concentration and the DP-LIBS signal than any other elements used. The Fe was known as one of the major components in current soil samples, and its concentration varied not substantially. The As concentration determined by the DP-LIBS was compared with that obtained by atomic absorption spectrometry (AAS) to evaluate the current LIBS system. They are correlated with a correlation coefficient of 0.94. The As concentration by the DP-LIBS was underestimated in the high concentration range (>1000 mg-As/kg). The loss of sensitivity that occurred at high concentrations could be explained by self-absorption in the generated plasma.  相似文献   

11.
In the present work we demonstrate a fiber-optic laser-induced breakdown spectroscopy (FO LIBS) system for delivering laser energy to a sample surface to produce a spark as well as to collect the resulting radiation from the laser-induced spark. In order to improve the signal/background (S/B) ratio, various experimental parameters, such as laser energy, gate delay and width, detector gain, lenses of different focal lengths and sample surface, were tested. In order to provide high reliability and repeatability in the analysis, we also measured plasma parameters, such as electron density and plasma temperature, and determined their influence on the measurement results. The performance of FO LIBS was also compared with that of a LIBS system that does not use a fiber to transmit the laser beam. LIBS spectra with a good S/B were recorded at 2-μs gate delay and width. LIBS spectra of six different Al alloy samples were recorded to obtain calibration data. We were able to obtain linear calibration data for numerous elements (Cr, Zn, Fe, Ni, Mn, Mg and Cu). A linear calibration curve for LIBS intensity ratio vs. concentration ratio reduces the effect of physical variables (i.e. shot-to-shot power fluctuation, sample-to-surface distance, and physical properties of the samples). Our results reveal that this system may be useful in designing a high-temperature LIBS probe for measuring the elemental composition of Al melt.  相似文献   

12.
A numerical model, describing laser–solid interaction (i.e., metal target heating, melting and vaporization), vapor plume expansion, plasma formation and laser–plasma interaction, is applied to describe the effects of double pulse (DP) laser ablation and laser induced breakdown spectroscopy (LIBS). Because the model is limited to plume expansion times in the order of (a few) 100 ns in order to produce realistic results, the interpulse delay times are varied between 10 and 100 ns, and the results are compared to the behavior of a single pulse (SP) with the same total energy. It is found that the surface temperature at the maximum is a bit lower in the DP configuration, because of the lower irradiance of one laser pulse, but it remains high during a longer time, because it rises again upon the second laser pulse. Consequently, the target remains for a longer time in the molten state, which suggests that laser ablation in the DP configuration might be more efficient, through the mechanism of splashing of the molten target. The total laser absorption in the plasma is also calculated to be clearly lower in the DP configuration, so that more laser energy can reach the target and give rise to laser ablation. Finally, it is observed that the plume expansion dynamics is characterized by two separate waves, the first one originating from the first laser pulse, and the second (higher) one as a result of the second laser pulse. Initially, the plasma temperature and electron density are somewhat lower than in the SP case, due to the lower energy of one laser pulse. However, they rise again upon the second laser pulse, and after 200 ns, they are therefore somewhat higher than in the SP case. This is especially true for the longer interpulse delay times, and it is expected that these trends will be continued for longer delay times in the μs-range, which are most typically used in DP LIBS, resulting in more intense emission intensities.  相似文献   

13.
Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition.  相似文献   

14.
A statistical analysis of single-shot spectral data is reported for laser-induced breakdown spectroscopy (LIBS). Fluctuations in both atomic emission and plasma continuum emission are investigated in concert for a homogenous gaseous flow, and fluctuations in plasma temperature are reported based on iron atomic emission in an aerosol-seeded flow. Threshold irradiance for plasma initiation and plasma absorption were investigated for pure gaseous and aerosol streams, with detailed statistical measurements performed as a function of pulse energy in the breakdown regime. The ratio of the analyte atomic emission intensity to the continuum emission intensity (peak/base) provided a robust signal for single-shot LIBS analysis. Moreover, at optimal temporal delay, the precision of the LIBS signal was maximized for pulse energies within the saturation regime with respect to plasma absorption of incident energy. Finally, single-shot temperature measurements were analyzed, leading to the conclusion that spatial variations in the plasma volume formation and subsequent plasma emission collection, play important roles in the overall shot-to-shot precision of the LIBS technique for gaseous and aerosol analysis.  相似文献   

15.
Double-pulse laser-induced plasma spectroscopy (DP-LIPS) is applied to submerged targets to investigate its feasibility for elemental analysis. The role of experimental parameters, such as inter-pulse delay and detection time, has been discussed in terms of the dynamics of the laser-induced bubble produced by the first pulse and its confinement effect on the plasma produced by the second laser pulse. The analytical performance of this technique applied to targets in a water environment are discussed. The elemental analysis of submerged copper alloys by DP-LIPS has been compared with conventional (single-pulse) LIBS in air. Theoretical investigation of the plasma dynamics in water bubbles and open air has been performed.  相似文献   

16.

The detection of chlorine and improvement in its detection has remained a challenge despite the use of a single pulse and a dual pulse laser induced breakdown spectroscopic technique (LIBS). In this article, we presented an alternate technique for improving the detection of chlorine (Cl) using LIBS in conjunction with an external electric filed. A comparison of the emission intensity enhancement and plasma parameters in the absence and presence of an external field has been also presented. The implication of the presented technique for the detection of Cl is much easier and inexpensive as compared with the dual pulse LIBS.

  相似文献   

17.
In the present work we are studying the influence of pulse duration (nanosecond (ns) and femtosecond (fs)) at λ = 248 nm on the laser-induced plasma parameters and the quantitative analysis results for elements such as Sn, Zn and Pb, in different types of bronze alloys adopting LIBS in ambient atmosphere. Binary (Sn–Cu), ternary (Sn–Zn–Cu or Sn–Pb–Cu) and quaternary (Sn–Zn–Pb–Cu) reference alloys characterized by a chemical composition and metallurgical features similar to those used in Roman times, were employed in the study. Calibration curves, featuring linear regression coefficients over 98%, were obtained for tin, lead and zinc, the minor elements in the bronze alloys (using the internal standardization method) as well as for copper, the major element. The effects of laser pulse duration and energy on laser-induced plasma parameters, namely the excitation temperature and the electron density have been studied in our effort to optimize the analysis. Finally, LIBS analysis was carried on three real metal objects and the spectra obtained have been used to estimate the type and elemental composition of the alloys based on the calibration curves produced with the reference alloys. The results obtained are very useful in the future use of portable LIBS systems for in situ qualitative and quantitative elemental analysis of bronze artifacts in museums and archaeological sites.  相似文献   

18.
In this paper the double pulse laser induced breakdown spectroscopy (LIBS) under water has been investigated both theoretically and experimentally. The laser induced bubble, produced by the first pulse, has been simulated by a theoretical model to clarify the effect of inter-pulse delay on the second pulse LIBS spectrum peculiarities. By experiments and calculations it has been established that the dynamics of the plasma obtained by double pulse LIBS is strongly affected by the chemical reactions between the plasma particles and the background environment inside the bubble which seems to be the main effect in confining the plasma.  相似文献   

19.
As applications for laser-induced breakdown spectroscopy (LIBS) become more varied with a greater number of field and industrial LIBS systems developed and as the technique evolves to be more quantitative that qualitative, there is a more significant need for LIBS systems capable of analysis with the use of a single laser shot. In single-shot LIBS, a single laser pulse is used to form a single plasma for spectral analysis. In typical LIBS measurements, multiple laser pulses are formed and collected and an ensemble-averaged method is applied to the spectra. For some applications there is a need for rapid chemical analysis and/or non-destructive measurements; therefore, LIBS is performed using a single laser shot. This article reviews in brief several applications that demonstrate the applicability and need for single-shot LIBS.  相似文献   

20.
One of the most recently applied laser-based techniques in combustion environment is the laser-induced breakdown spectroscopy (LIBS). The technique has been extensively and successfully applied to elemental concentration measurements in solids and liquids. The LIBS signal is much weaker in gases and hence more work is required for quantitative measurements in flames. In the present work we used two orthogonal Nd:YAG lasers that operate at the fundamental wavelength with laser pulse energy of about 100 mJ/pulse. A Princeton-Instruments IMAX ICCD camera attached to a PI-Echelle spectrometer was used for signal detection. The lasers are focused using two 5-cm lenses. Several calibration points have been collected in well defined and homogeneous mixtures of air and fuel in order to be used as references for the measurements in turbulent partially premixed flames. This work shows that the application of the LIBS technique in a turbulent combustion environment is feasible and signal is enhanced by applying an orthogonal dual-pulse arrangement for air–fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号