首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
In this work, the possibility of using Laser-Induced Breakdown Spectrometry (LIBS) combined with liquid–liquid microextraction techniques is evaluated as a simple and fast method for trace elemental analysis. Two different strategies for LIBS analysis of manganese contained in microdroplets of extraction solvent (Triton X-114) are studied: (i) analysis by direct laser irradiation of microdroplets; and (ii) analysis by laser irradiation of microdroplets dried on metallic substrates (surface-enhanced LIBS — SENLIBS). Experiments were carried out using synthetic samples with different concentrations of manganese in a 10% w/w Triton X-114 matrix. The analysis by direct laser irradiation of microdroplets showed low precision, sensitivity and poor linearity across the concentration range evaluated (R2 < 0.95). On the other hand, the SENLIBS method of analysis improved the sensitivity, the precision and the linearity of the calibration curve with respect to the direct analysis of microdroplets. In comparison with experimental results obtained by direct analysis, SENLIBS also allowed several replicate measurements to be carried out in a single microdroplet. The limit of detection obtained was 6 μg g 1 of Mn.  相似文献   

2.
A novel liquid–liquid–solid microextraction (LLSME) technique based on porous membrane-protected molecularly imprinted polymer (MIP)-coated silica fiber has been developed. In this technique, a MIP-coated silica fiber was protected with a length of porous polypropylene hollow fiber membrane which was filled with water-immiscible organic phase. Subsequently the whole device was immersed into aqueous sample for extraction. The LLSME technique was a three-phase microextraction approach. The target analytes were firstly extracted from the aqueous sample through a few microliters of organic phase residing in the pores and lumen of the membrane, and were then finally extracted onto the MIP fiber. A terbutylazine MIP-coated silica fiber was adopted as an example to demonstrate the feasibility of the novel LLSME method. The extraction parameters such as the organic solvent, extraction and desorption time were investigated. Comparison of the LLSME technique was made with molecularly imprinted polymer based solid-phase microextraction (MIP-SPME) and hollow fiber membrane-based liquid-phase microextraction (HF-LPME), respectively. The LLSME, integrating the advantages of high selectivity of MIP-SPME and enrichment and sample cleanup capability of the HF-LPME into a single device, is a promising sample preparation method for complex samples. Moreover, the new technique overcomes the problem of disturbance from water when the MIP-SPME fiber was exposed directly to aqueous samples. Applications to analysis of triazine herbicides in sludge water, watermelon, milk and urine samples were evaluated to access the real sample application of the LLSME method by coupling with high-performance liquid chromatography (HPLC). Low limits of detection (0.006–0.02 μg L−1), satisfactory recoveries and good repeatability for real sample (RSD 1.2–9.6%, n = 5) were obtained. The method was demonstrated to be a fast, selective and sensitive pretreatment method for trace analysis of triazines in complex aqueous samples.  相似文献   

3.
A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L−1, 1.0 mg L−1, 1.3 mg L−1 and 0.2 mg L−1 were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments.  相似文献   

4.
Alamelu D  Sarkar A  Aggarwal SK 《Talanta》2008,77(1):256-261
This paper reports studies on the determination of trace levels of samarium, europium and gadolinium in aqueous samples by laser-induced breakdown spectroscopy (LIBS). In this work, a membrane-based filter paper was used as a sample support for the liquid samples. The laser-induced plasma was produced in air at atmospheric pressure, using a pulsed Nd:YAG laser. Calibration standards and synthetic mixtures of these lanthanides were prepared using solutions prepared from respective high purity oxides. Linear calibration was obtained for Sm, Eu and Gd by normalizing the intensities of lanthanides emission lines with respective to C(I) 193.029 nm emission line. The concentrations of Sm, Eu and Gd were then determined in a solution containing a mixture of these lanthanides. The concentrations of individual lanthanides were obtained within 5% of the expected values. Limits of detection were found to be 1.3 ppmw (Sm), 1.9 ppmw (Eu) and 2.3 ppmw (Gd).  相似文献   

5.
A new simultaneous derivatization and extraction method for the preconcentration of ammonia using new one-step headspace dynamic in-syringe liquid-phase microextraction with in situ derivatization was developed for the trace determination of ammonium in aqueous samples by liquid chromatography with fluorescence detection (LC–FLD). The acceptor phase (as derivatization reagent) containing o-phthaldehyde and sodium sulfite was held within a syringe barrel and immersed in the headspace of sample container. The gaseous ammonia from the alkalized aqueous sample formed a stable isoindole derivative with the acceptor phase inside the syringe barrel through the reciprocated movements of plunger. After derivatization-cum-extraction, the acceptor phase was directly injected into LC–FLD for analysis. Parameters affecting the ammonia evolution and the extraction/derivatization efficiency such as sample matrix, pH, temperature, sampling time, and the composition of derivatization reagent, reaction temperature, and frequency of reciprocated plunger, were studied thoroughly. Results indicated that the maximum extraction efficiency was obtained by using 100 μL derivatization reagent in a 1-mL gastight syringe under 8 reciprocated movements of plunger per min to extract ammonia evolved from a 20 mL alkalized aqueous solution at 70 °C (preheated 4 min) with 380 rpm stirring for 8 min. The detection was linear in the concentration range of 0.625–10 μM with the correlation coefficient of 0.9967 and detection limit of 0.33 μM (5.6 ng mL−1) based on S N−1 = 3. The method was applied successfully to determine ammonium in real water samples without any prior cleanup of the samples, and has been proved to be a simple, sensitive, efficient and cost-effective procedure for trace ammonium determination in aqueous samples.  相似文献   

6.
A novel laser-induced breakdown spectroscopy (LIBS)-based measurement method for metals in water is demonstrated. In the presented technology a small amount of sodium chloride is dissolved in the sample solution before spraying the sample into a tubular oven. After water removal monodisperse dry NaCl aerosol particles are formed where trace metals are present as additives. A single-particle LIBS analysis is then triggered with a scattering based particle detection system. Benefits are the highly increased metal concentration in the LIBS focal volume and the static NaCl-matrix which can be exploited in the signal processing procedure. Emitted light from the emerged plasma plume is collected with wide angle optics and dispersed with a grating spectrometer. In an aqueous solution, the respective limits of detection for zinc and lead were 0.3 ppm and 0.1 ppm using a relatively low 14 mJ laser pulse energy. Zn/Na peak intensity ratio calibration curve for zinc concentration was also determined and LIBS signal dependence on laser pulse energy was investigated.  相似文献   

7.
The combination of the laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) techniques was investigated to improve the limit of detection (LoD) of trace elements in solid matrices. The influence of the main experimental parameters on the LIF signal, namely the ablation fluence, the excitation energy, and the inter-pulse delay, was studied experimentally and a discussion of the results was presented. For illustrative purpose we considered detection of lead in brass samples. The plasma was produced by a Q-switched Nd:YAG laser and then re-excited by a nanosecond Optical Parametric Oscillator (OPO) laser. The experiments were performed in air at atmospheric pressure. We found out that the optimal conditions were obtained for our experimental set-up using relatively weak ablation fluence of 2–3 J/cm2 and an inter-pulse delay of about 5–10 μs. Also, a few tens of microjoules was typically required to maximize the LIF signal. Using the LIBS–LIFS technique, a single-shot LoD for lead of about 1.5 part per million (ppm) was obtained while a value of 0.2 ppm was obtained after accumulating over 100 shots. These values represent an improvement of about two orders of magnitude with respect to LIBS.  相似文献   

8.
In this study, graphene oxide-encapsulated core–shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach between positive charged poly(diallyldimethylammonium) chloride (PDDA)-modified Fe3O4@SiO2 and negative charged GO sheets via electrostatic interaction. The as-prepared GOE-CS-MM was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer analysis (VSM), and X-ray photoelectron spectroscopy (XPS), and was used as a cleanup adsorbent in magnetic solid-phase extraction (MSPE) for determination of 15 trace-level environmental phenols in seafood coupled to liquid chromatography–tandem mass spectrometry (LC–MS/MS). The obtained results showed that the GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. The cleanup mechanisms were investigated and referred to π–π stacking interaction and hydrogen bond between GOE-CS-MM and impurities in the extracts. Moreover, the extraction and cleanup conditions of GOE-CS-MM toward phenols were optimized in detail. Under the optimized conditions, the limits of detection (LODs) were found to be 0.003–0.06 μg kg−1, and satisfactory recovery values of 84.8–103.1% were obtained for the tested seafood samples. It was confirmed that the developed method is simple, fast, sensitive, and accurate for the determination of 15 trace environmental phenols in seafood samples.  相似文献   

9.
Summary A liquid chromatographic procedure for separating nickel and zinc has been developed. Xylenol orange, which is one of the sensitive and commercially available color-forming agents, was used as a component of the mobile phase. The two ions could be separated on weak anion-exchange gels within 10 min. The procedure was suitable for the determination of nickel and zinc in relatively pure solutions with fairly high sensitivity. The described liquid chromatographic analysis would be also potentially applicable for any aqueous sample containing trace levels of metal cations at 1–10 ppm.  相似文献   

10.
In this study we on-line coupled hollow fiber liquid–liquid–liquid microextraction (HF-LLLME), assisted by an ultrasonic probe, with high-performance liquid chromatography (HPLC). In this approach, the target analytes – 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 2,6-dichlorophenol (2,6-DCP), and 3,4-dichlorophenol (3,4-DCP) – were extracted into a hollow fiber (HF) supported liquid membrane (SLM) and then back-extracted into the acceptor solution in the lumen of the HF. Next, the acceptor solution was withdrawn on-line into the HPLC sample loop connected to the HF and then injected directly into the HPLC system for analysis. We found that the chlorophenols (CPs) could diffuse quickly through two sequential extraction interfaces – the donor phase – SLM and the SLM – acceptor phase – under the assistance of an ultrasonic probe. Ultrasonication provided effective mixing of the extracted boundary layers with the bulk of the sample and it increased the driving forces for mass transfer, thereby enhancing the extraction kinetics and leading to rapid enrichment of the target analytes. We studied the effects of various parameters on the extraction efficiency, viz. the nature of the SLM and acceptor phase, the compositions of the donor and acceptor phases, the fiber length, the stirring rate, the ion strength, the sample temperature, the sonication conditions, and the perfusion flow rate. This on-line extraction method exhibited linearity (r2 ≥ 0.998), sensitivity (limits of detection: 0.03–0.05 μg L−1), and precision (RSD% ≤ 4.8), allowing the sensitive, simple, and rapid determination of CPs in aqueous solutions and water samples with a sampling time of just 2 min.  相似文献   

11.
A comparison between single- and double-pulse LIBS for the quantitative elemental analysis of used engine oils has been performed. Paper substrates have been utilised for the analysis and are shown to provide better limits of detection (LODs), no splashing and easier sample handling compared to the previously reported experiments using laminar liquid jets and static liquid surfaces. Single-pulse LIBS analysis of oil on paper substrates has had on average 2× better LODs than was obtained using flowing liquid jets, while double-pulse LIBS showed 4× improvement. Single-pulse LIBS has been found preferable for the analysis, as the use of an additional laser in double-pulse LIBS yielded only a minor improvement while adding substantially to the complexity and cost of the system.  相似文献   

12.
Corrosion is one of the main reasons for in-core accidents in liquid sodium-cooled fast reactors, especially accidents due to fuel cladding pipe damage. It is urgently required to investigate what kind of compound is produced as a corrosion product after the interaction between stainless steel and sodium in fast breeder reactors (FBR). In this work, the identification and quantification of sodium contaminant on steel surfaces has been conducted using laser-induced breakdown spectroscopy utilizing the specific characteristics of a pulse transversely excited atmospheric CO2 laser. Experimentally, a pulse TEA CO2 laser (Shibuya, 10.64 μm, 200 ns) was directed and bombarded onto the sodium contaminant deposited on the surface of stainless steel. An excellent emission spectrum of sodium from the contaminant was obtained without any disturbance from analytical lines from the steel itself. A quantification of sodium contaminant on the steel surface has been successfully made by a linear calibration curve obtained from steel containing various concentrations of sodium. The limit of detection of sodium on the metal surface was estimated to be 0.5 mg/kg. Also, a comparative sodium analysis study was qualitatively made by using LIBS utilizing a pulse Nd:YAG laser. The results demonstrate that the present technique of TEA CO2 LIBS is far superior to the case of Nd:YAG LIBS, as proven by an excellent emission spectrum of sodium with optimum intensity, and low noise and background emission.  相似文献   

13.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   

14.
A novel approach for preconcentration and speciation analysis of trace amount of mercury from water samples was proposed by dispersive liquid–liquid microextraction (DLLME) coupled to high performance liquid chromatography with diode array detection (HPLC-DAD). Mercury species (Hg2+, methylmercury (MeHg+) and phenylmercury (PhHg+)) were complexed with dithizone (DZ) to form hydrophobic chelates and then extracted into the fine drops of extraction solvent dispersed in the aqueous sample by dispersive solvent. After extraction, the sedimented phase was analyzed by HPLC-DAD. Some important parameters affecting the DLLME such as extraction solvent and dispersive solvent type and volume, concentration of dithizone solution, sample pH, extraction time and salt effect were investigated. Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) was found to be a suitable extractant for the chelates. Under the optimized conditions (extraction solvent: 70 μL of ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]); dispersive solvent: 0.75 mL of methanol containing dithizone (0.02%, m/v); pH: 4; extraction time: 5 min; and without salt addition), the limits of detection for Hg2+, MeHg+ and PhHg+ were 0.32, 0.96 and 1.91 μg L−1 (S N−1 = 3) respectively, and the relative standard deviation (RSD) was between 4.1 and 7.3% (n = 5). Three real water samples (tap water, river water and lake water) spiked with mercury species were detected by the developed method, and the relative recoveries obtained for Hg2+, MeHg+ and PhHg+ were 89.6–101.3%, 85.6–102.0% and 81.3–97.6%, respectively.  相似文献   

15.
Laser-induced breakdown spectroscopy (LIBS), combined with a flow-injection system, is demonstrated to analyze liquid droplets of aluminum salt, as generated with an electrospray ionization device. The spray needle also serves as the anode, through which the analyte solution is spread toward the other metal base as the cathode. Along the passage of the FI manifold, the Al-sample loading speed is controlled at 0.15 mL min−1, restricted to the small diameter of the spray needle, and the loading volume amounts to 0.1 mL. The metal ion is retained in a cation-exchange resin microcolumn immobilized with Chromotrope 2B chelating agent, followed by elution with a 0.5 M HCl solution into LIBS. Upon laser irradiation at the preconcentrated liquid droplets, the time-resolved laser-induced breakdown (LIB) emission and plasma-induced current signals are acquired concurrently on a single-shot basis. The area under the LIB/current distribution increases in linear proportion as the concentration of the sample solution increases. The detection limit thus obtained can reach 1.5 mg L−1, about an order of magnitude lower than those achieved previously using single-laser ablation without involvement of preconcentration. The linear dynamic range is more than two orders of magnitude.  相似文献   

16.
A simple and fast method of low-density extraction solvent-based solvent terminated dispersive liquid–liquid microextraction (ST-DLLME) was developed for the highly sensitive determination of carbamate pesticides in the water samples by gas chromatography-tandem mass spectrometry (GC-MSMS). After dispersing, the obtained emulsion cleared into two phases quickly when an aliquot of acetonitrile was introduced as a chemical demulsifier into the aqueous bulk. Therefore, the developed procedure does not need centrifugation to achieve phase separation. It was convenient for the usage of low-density extraction solvents in DLLME. Under the optimized conditions, the limits of detection for all target carbamate pesticides were in range of 0.001–0.50 ng mL−1 and the precisions were in the range of 2.3–6.8% (RSDs, 2 ng mL−1, n = 5). The proposed method has been successfully applied to the analysis of real water samples and good spiked recoveries over the range of 94.5–104% were obtained.  相似文献   

17.
Rapid and ultrasensitive detection of trace heavy metal mercury(II) ions (Hg2+) are of significant importance due to the induced serious risks for environment and human health. This presented article reports the gold nanoparticle-based dual labeling colorimetric method (Dual-COLO) for ultrasensitive and rapid detection of Hg2+ using the specific thymine–Hg2+–thymine (T–Hg2+–T) as recognition system and the dual labeling strategy for signal amplification. Both qualitative and quantitative detections of Hg2+ are achieved successfully in aqueous samples. More importantly, the achieved detection limit of 0.005 ng mL−1 (0.025 nM) without any instruments is very competitive to other rapid detection methods even ICP-MS based methods. This Dual-COLO method is also applied directly for real water sample monitoring and, more importantly, applied in analysis of mercury poisoned animal tissues and body fluidic samples, indicating a potentially powerful and promising tool for environmental monitoring and food safety control.  相似文献   

18.
This work reports on a simple, quick-freeze method for the quantitative analysis of trace metal ions in liquids applying the laser-induced breakdown spectroscopy (LIBS) technique. Using this procedure with calibrated samples, well-characterized linear working curves were determined for Na and Al water solutions over the 0.01–1% concentration range. This allowed detection limits of the order of ppm. In addition, optimum experimental conditions were found that allow the analysis to be carried out in a fast and very easy manner, without the limitations and difficulties found with liquid samples. The advantages of this simple and direct method, developed and patented by the Instituto Pluridisciplinar–UCM, are discussed, and potential applications for industrial analysis are also suggested.  相似文献   

19.
This study introduced a simple combining apparatus for performing a magnetic stirring-assisted dispersive liquid–liquid microextraction (MSA-DLLME) for the detection of trace carbamate and organophosphorus pesticides in tea drinks coupled with high performance liquid chromatography. The simple combining apparatus was made up of a sample vial and a cut plastic dropper. The bulb end of the cut plastic dropper was inserted into the neck of the sample vial and the open tip end of the plastic dropper was then cut to an appropriate length. The combining apparatus made was then used to perform the MSA-DLLME. In this experiment, 1-octanol was injected into the tea drink sample solution and the extraction process accelerated by magnetic agitation. The sample solution turned clear and separated into two layers after leaving it alone for several minutes. The cut plastic dropper was gently put down into the sample vial, and then the liquid level of the sample solution elevated up to the tip of the plastic dropper for the collection of low-density extractant. Finally, the collected extractant was drawn out by a microsyringe and injected into the high performance liquid chromatography-diode-array detector for analysis. A series of extraction parameters were investigated and optimized. Under the most favorable conditions, high enrichment factors were obtained for carbofuran, carbaryl and isocarbophos (between 130 and 185). The limits of detection (S/N = 3) were in the range of 0.13–0.61 μg L−1, and the relative standard deviation varied below 7.8% (n = 5). Additionally, good recoveries were obtained between 79.4% and 114.4% in the three tea drinks. The simple combining apparatus utilized in this MSA-DLLME method was shown to be economical, fast, and convenient for the collection of low density extractant.  相似文献   

20.
An automated, simple and sensitive method based on selective pressurized liquid extraction (SPLE) was developed for the analysis of polycyclic aromatic hydrocarbons in sewage sludge samples. The new sample preparation procedure consists of on-line clean-up by inclusion of sorbents in the extraction cell, and combines elevated temperatures and pressures with liquid solvents to achieve fast and efficient removal of target analytes from complex sewage sludge matrices. The effects of various operational parameters (e.g. sample pretreatment, extraction solvent, temperature, pressure, static time, etc.) on the performance of SPLE procedure were carefully investigated, obtaining the best results when SPLE conditions were fixed at 140 °C, 1500 psi, static time of 5 min and n-hexane as extraction solvent. A new programmed temperature vaporization–gas chromatography–tandem mass spectrometry method based on large volume injection (PTV–LVI–GC–MS/MS) was also developed and analytical determinations were performed by high performance liquid chromatography coupled with fluorescence detection and GC–MS/MS. The extraction yields for the different compounds obtained by SPLE ranged from 84.8% to 106.6%. Quantification limits obtained for all of these studied compounds (between 0.0001 and 0.005 μg g−1, dry mass) were well below the regulatory limits for all compounds considered. To test the accuracy of the SPLE technique, the optimized methodology was applied to the analysis of a certified reference material (sewage sludge (BCR088)) and a reference material (sewage sludge (RTC-CNS312-04)), with excellent results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号