首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
合成了N,N-二(2-羧基苯基)-2,6-吡啶二甲酰胺(简称BCPD)铕配合物,通过元素分析、电导率测定、红外光谱及紫外光谱对其进行了结构表征。结果表明:标题配合物中稀土离子与配体以1∶1的方式结合,化学组成符合C23H21N3O8ClEu,并进一步探讨了配合物配位方式。固体荧光及荧光滴定光谱分析表明:配体与稀土离子间存在明显的"天线效应",铕离子在590,617 nm处的特征荧光敏化效果显著,因此该配合物有望成为理想的光致发光材料。  相似文献   

2.
本文通过紫外-可见吸收光谱和荧光光谱,在乙醇溶液中(pH=7~8)研究了Cu(Ⅱ)离子与N,N-二(2-羧基苯基)-2,6-吡啶二甲酰胺(BCPD)的相互作用.结果表明溶液中二者以1∶1的化学计量比形成配合物,表观结合常数为(4.59+0.05)× 106 mo1-1·L.由Cu(Ⅱ)离子与BCPD在甲醇中反应合成了1∶1型铜配合物[Cu(Ⅱ)(BCPD)]2-· 2[(C2H5)3NH]+·CH3OH,用元素分析、单晶X射线衍射等手段对配合物的结构进行了表征.晶体属于单斜晶系,P21/c空间群α=1.290 90(12) nm,b=1.855 19(19) nm,c=1.752 31(16) nm,β=122.920(2)°.BCPD以吡啶氮、两个去质子化的酰胺氮原子和2个羧基与Cu(Ⅱ)配位,形成五配位畸变四方锥构型.  相似文献   

3.
本文通过紫外-可见吸收光谱和荧光光谱,在乙醇溶液中(pH=7~8)研究了Cu(Ⅱ)离子与N,N-二(2-羧基苯基)-2,6-吡啶二甲酰胺(BCPD)的相互作用。结果表明溶液中二者以1∶1的化学计量比形成配合物,表观结合常数为(4.59±0.05)×106mol-1.L。由Cu(Ⅱ)离子与BCPD在甲醇中反应合成了1∶1型铜配合物[Cu(Ⅱ)(BCPD)]2-.2[(C2H5)3NH]+.CH3OH,用元素分析、单晶X射线衍射等手段对配合物的结构进行了表征。晶体属于单斜晶系,P21/c空间群a=1.290 90(12)nm,b=1.855 19(19)nm,c=1.752 31(16)nm,β=122.920(2)°。BCPD以吡啶氮、两个去质子化的酰胺氮原子和2个羧基与Cu(Ⅱ)配位,形成五配位畸变四方锥构型。  相似文献   

4.
杨青  赵强 《分析测试学报》2008,27(6):603-607
从吡啶-2,6-二甲酸(L1)出发,合成了2种含有多个共轭体系和多齿的N2,N6-二(3-甲基吡啶)-2-取代吡啶-2,6-二甲酰胺(L2)配体和N2,N6-二对甲苯基吡啶-2,6-二甲酰胺 (L3) 配体;制备了化合物N2,N6-二(3-甲基吡啶)-2-取代吡啶-2,6-二甲酰胺(L2)与Tb(Ⅲ)和Eu(Ⅲ)的配合物,培养出了单晶.通过红外光谱、元素分析和X射线单晶衍射仪确定配合物的组成和结构.结果表明:在Tb(Ⅲ)配合物的稀溶液中,当溶液pH值为7时荧光强度最强,pH值大于或小于7荧光强度都逐渐减弱;当溶液pH为7时,N2,N6-二(3-甲基吡啶)-2-取代吡啶-2,6-二甲酰胺对Tb(Ⅲ)的荧光强度敏化远大于吡啶-2,6-二甲酸;N2,N6-二(3-甲基吡啶)-2-取代吡啶-2,6-二甲酰胺和吡啶-2,6-二甲酸与Eu(Ⅲ)形成稀的配合物溶液的荧光强度随pH值的增加而增大(pH 3~11).  相似文献   

5.
付佩玉  杨启霞 《分析化学》1999,27(9):1054-1057
对2-(3,5-二溴-2-吡啶偶氮)-5-二乙氨基苯酚作铁(Ⅲ),铜(Ⅱ)的配位滴定指示剂进行了研究.在pH1.8~2.0时用EDTA标准溶液滴定铁(Ⅲ).在滴定铁(Ⅲ)后的溶液中,加入对铝过量的EDTA标准溶液,在pH3.8~4.0煮沸下,铝(Ⅲ)与EDTA生成稳定的络合物,过量的EDTA用硫酸铜标准溶液滴定,从而测定铝(Ⅲ).  相似文献   

6.
王彩荣  王璟琳  白洋 《化学通报》2015,78(8):764-767
摘要: 以BCPD为配体,按不同摩尔比掺杂Ln 3+ (Ln = Gd,Y)的Eu混合物为中心体,合成掺杂钆、钇的稀土铕配合物EuxLn1-x-BCPD,并对配合物进行了光谱分析。红外分析结果表明掺杂钆、钇后的配合物结构与未掺杂的BCPD-Eu配合物的配位结构基本保持一致;荧光分析结果表明:两种掺杂离子对铕配合物的特征荧光均存在“共发光效应”,但钆的共荧光作用要强于钇;随着掺杂离子的加入,体系中R值均大于1,且当掺杂稀土离子与铕离子的比例接近1:1时,所得掺杂配合物的荧光强度最大。实验结果为进一步开发成本低且发光性能良好的稀土发光材料提供了依据。  相似文献   

7.
采用Claisen缩合反应合成了一种β-二酮1-(4-氨基苯)-3-苯基丙烷-1,3-二酮(L:C15H13NO2),以元素分析和1H NMR谱确定了其组成,核磁和红外分析结果表明L主要以烯醇式存在。以L为第一配体,分别以邻菲罗啉(phen),2,2’-联吡啶(bipy)为第二配体,合成了新的稀土Eu,Tb(Ⅲ)三元配合物。通过元素分析、红外光谱、紫外光谱、磷光光谱和荧光光谱对合成的配合物进行了表征。荧光光谱表明:稀土铽配合物的发光性能优于稀土铕配合物,进一步研究表明配体L与Tb3+间能级差较匹配,分子内传能效率高;phen对配合物的荧光敏化效果优于bipy,表明第二配体的刚性和共轭性越大,配合物的发光性能越好。  相似文献   

8.
以1,3-二(4-吡啶基)-丙烷(bpp)和邻苯二甲酸(1,2-H2bdc)为配体,通过水热法合成了过渡金属配合物M2(1,2-bdc)2(bpp)2·2H2O[M=Co(1),Ni(2)]和Cd(1,2-bdc)(bpp)·H2O(3).配合物1和2属单斜晶系P21空间群,具有相似的三维骨架结构.配合物中存在2种配位环境相似的金属中心,每个金属中心采取六配位的畸变八面体构型,与来自2个1,2-bdc配体的3个氧原子和2个bpp配体的2个氮原子以及1个水分子配位.1,2-bdc配体采取单齿/双齿螯合的配位模式将金属离子连接成M1-(1,2-bdc)-M2右手螺旋链.bpp配体采取Trans-Gauche(TG)构型,连接相邻的金属离子形成M1-(bpp)-M1链和M2-(bpp)-M2链.这3种链交织在一起构筑成具有{65.8}拓扑的三维结构.配合物3属单斜晶系P21/c空间群,具有单节点的双层二维结构.Cd(Ⅱ)离子采取七配位的畸变五角双锥体构型,与来自2个1,2-bdc配体的4个氧原子,2个bpp配体的2个氮原子和1个水分子配位.1,2-bdc配体采取双齿螯合/双齿螯合的配位模式将Cd(Ⅱ)离子连接成Cd-(1,2-bdc)-Cd链.bpp配体采取TG构型,连接相邻的Cd(Ⅱ)离子,形成Cd-(bpp)-Cd链.这2种链通过共享Cd(Ⅱ)离子交错排列构筑成二维结构.配合物3显示出强的荧光,最大发射位于408 nm处,对应于配体的π*-π跃迁.不同有机小分子对配合物3的荧光强度有不同程度的影响,苯胺对其有显著的猝灭作用,基于荧光猝灭机理,配合物3可用于选择性检测苯胺分子.  相似文献   

9.
首次合成了四种N,N′-双(2-吡啶甲酰胺)-1,4-二乙烯三胺(L=C16H19N5O2)稀土配合物。经过元素分析、红外光谱、热重分析和摩尔电导值的分析,确定配合物的组成为[Ln(H3L)(NO3)2].NO3.C l3.3H2O,(Ln=La(Ⅲ),Eu(Ⅲ),Gd(Ⅲ),Ho(Ⅲ))。光谱测试结果表明:配体中两个酰胺基氧和两个吡啶氮分别与稀土离子配位,两个硝酸根均为双齿配体,稀土离子的配位数为8,Ln(Ⅲ)与H3L形成了1∶1的配合物。另外,进一步采用荧光光谱、表面增强拉曼光谱和粘度法研究了系列配合物与DNA的作用情况。研究结果表明,系列配合物与DNA之间存在相互作用,其作用模式主要为沟面结合和静电作用。  相似文献   

10.
通过溶剂热法成功合成出一种新型的配位化合物,命名为[Tb(L)(H2O)2]n(1)(H3L=4,4’,4"-((1,3,5-三嗪-2,4,6-三基)三(硫代二基))三苯甲酸)。单晶衍射分析结果显示配合物1属于单斜晶系,C2/c空间群。所有的配体桥连金属离子形成了一个具有一维孔道的三维框架。此外,荧光研究结果表明:Cu^2+和Fe^3+对配合物1具有明显的荧光淬灭响应。  相似文献   

11.
The binding properties of trivalent metal ions to polyelectrolytes were investigated through the use of terbium [Tb(III)] in fluorescence studies. The fluorescence intensity and lifetimes of the lanthanide ions are directly dependent upon the number of water molecules bound to their inner coordination sphere. The more efficiently a ligand coordinates to a lanthanide ion, the more water molecules are expelled and consequently, the greater the fluorescence intensity and lifetime. This effect was used to probe for differences in the complexation behavior of tactic polymers. Aqueous solutions of isotactic and syndiotactic poly(methacrylic acid) (PMA) were neutralized and complexed with Tb(III) ions. The fluorescence intensity of the 286 nm hypersensitive excitation band was monitored and the lifetimes were measured using several excitation wavelengths. It was found that the isotactic PMA/Tb(III) complex exhibited a six times greater fluorescence intensity than the syndiotactic PMA complex. Lifetime measurements gave the number of water molecules coordinated by Tb(III) in the isotactic complex to be 2.4 while 3.4 waters remained bound to the Tb(III) ion in the syndiotactic PMA complex. These results indicate that isotactic PMA has the greater binding affinity towards Tb(III) ions. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
Two new mononuclear lanthanide(III) complexes Ln(pytz)3(H2O)3·(H2O)3.5[Ln=Tb(1); Eu(2); Hpytz= 5-(2-pyridyl)tetrazole] were synthesized by reacting Hpytz with the corresponding lanthanide(III) ions and characterized. The single crystal X-ray diffraction analysis reveals that complexes 1 and 2 are isostructural and the lanthanide(III) ions in both complexes 1 and 2 are nine-coordinated, with three oxygen atoms of three coordination water molecules and six nitrogen atoms of three pytz ligands, forming a monocapped square antiprism. Extensive hydrogen bonds exist, resulting in a three-dimensional supramolecular network structure by hydrogen-bonds in both complexes 1 and 2, respectively. Complex 1 exhibits typical green fluorescence of Tb(III) ion and complex 2 red fluorescence of Eu(III) ion, in solid state at room temperature.  相似文献   

13.
A new kind of the thermo-sensitive and fluorescent complex of poly(N-isopropylacrylamide) (PNIPAM) and Tb(III) was synthesized by free radical polymerization, in which PNIPAM was used as a polymer ligand. The complex was characterized by using X-ray photoelectron spectroscopy (XPS), ultraviolet-visual (UV), Fourier transform infrared (FT-IR) and fluorescence spectroscopy. The results from the experiments indicated that there is a strong interaction between PNIPAM and Tb(III), leading to a decrease in the electron density of nitrogen and oxygen atoms and an increase in the electron density of Tb(III) in the PNIPAM containing Tb(III) by contrast with PNIPAM and Tb(III), respectively, meanwhile, exhibiting that the Tb(III) is mainly bonded to oxygen atoms in the polymer chain of PNIPAM and formed the complex of PNIPAM-Tb(III). After forming the PNIPAM-Tb(III) complex, the emission fluorescence intensity of Tb(III) in the PNIPAM-Tb(III) complex is significantly enhanced because the effective intramolecular energy transfer from PNIPAM to Tb(III). Especially, the emission intensity of the fluorescence peak at 547 nm can be increased as high as 145 times comparing with that of the pure Tb(III). The intramolecular energy transfer efficiency for fluorescence peak at 547 nm can reach as high as 68%. The fluorescence intensity is related the weight ratio of Tb(III) and PNIPAM in the PNIPAM-Tb(III) complex. When the weight ratio is 1.4%, the maximum fluorescence enhancement can be obtained. Nevertheless, the lower critical solution temperature of PNIPAM containing a low content of Tb(III) has not obviously changed after the formation of the complex of PNIPAM-Tb(III) by the interaction between PNIPAM and Tb(III). This novel thermosensitive and fluorescence characterization of the PNIPAM-Tb(III) complex may be useful in the fluorescence systems and the biomedical field.  相似文献   

14.
The interaction of dextran with terbium(III) was studied in aqueous solution, pH 3.0–6.6, by fluorescence and optical rotatory dispersion. The polysaccharide enhances Tb(III) fluorescence intensity when the system is excited at the 290-nm hypersensitive transition (7F65H4). The dextran rotatory power is decreased in the presence of the metal ion. The results indicate that a 38% maximum of the polymer repeat units are coordinated. Complex formation occurs with displacement of water from the cation coordination sphere by hydroxyl groups at the second and third carbon atoms of the pyranoside ring. As the pH increases, a more asymmetric complex is formed. The α-methyl glucoside, low molecular weight dextran analogue, interacts with Tb(III) less strongly than dextran. Fluorimetric titrations indicated that the order of binding ability to polysaccharide is Tb(III) > Al(III) > Ca (II). © 1993 John Wiley & Sons, Inc.  相似文献   

15.
A binuclear terbium(III) complex of N-(2-pyridinyl)ketoacetamide (HL) was synthesized and its crystal structure determined. Each terbium(III) binds to one N,O-bidentate HL, one O,O-bidentate L and two N,μ-O,O-tridentate bridging L ligands; the coordination polyhedron is a distorted square antiprism. The pyridine N and keto O atoms of the binucleating ligand are coordinated to each Tb with the amide O acting as a bridging atom. The adjacent [Tb2(HL)2L4]2+ units are bridged by double C(R)NH…ONO2…HN(R)C hydrogen bonds to form an infinite 1-D chain, and a 2-D layer structure results from a rare near face-to-face π,π-stacking interaction between the pyridine rings of the adjacent chains. The crystal structure analysis reveals that the ligands completely shield the Ln(III) ions. Excited by the absorption band at 370?nm, the Tb(III) complex displays characteristic metal-centered fluorescence while the ligand fluorescence is completely quenched, showing that efficient ligand-to-metal energy transfer (antenna effect) occurs.  相似文献   

16.
Tb(III)与PNIPAM接枝核壳纳米微球相互作用的研究   总被引:5,自引:0,他引:5  
利用透射电镜、X射线光电子能谱、动态激光光散射和荧光光谱技术对Tb(III)与聚N-异丙基丙烯酰胺(PNIPAM)接枝核壳纳米微球PNIPAM-g-P(NIPAM-co-St) (PNNS)的相互作用进行了研究. 结果表明: Tb(III)和热敏性的核壳纳米微球PNNS有显著的相互作用. 其一, Tb(III)可与PNNS中酰胺基团上的氧原子配位形成微球配合物Tb(III)-PNNS; 其二, Tb(III)-PNNS微球配合物兼具热敏性; 其三, 该配合物在545 nm处的荧光强度较Tb(III)增大了233倍, Tb(III)与PNNS分子间能量传递达到50%, 当Tb(III) 质量分数为12%时荧光强度最大.  相似文献   

17.
Based on the synthesis of poly(N-isopropylacrylamide-co-styrene) P(NIPAM-co-St) and poly(N-isopropylacrylamide) (PNIPAM) grafted P(NIPAM-co-St) core-shell nanoparticle, a new kind of thermoresponsive and fluorescent complex of Tb(III) and PNIPAM-g-P(NIPAM-co-St) (PNNS) was successfully prepared. The PNNS-Tb(III) complex was characterized with the different techniques. It was found that when PNNS with the core-shell structure interact with Tb(III), Tb(III) mainly bonded to O of the carbonyl groups of PNNS, forming the novel PNNS-Tb(III) complex. After forming the complex, the emission fluorescence intensity of Tb(III) in the complex is significantly enhanced. Especially, the maximum emission intensity of the PNNS-Tb(III) complex at 545 nm is enhanced about 223 times comparing to that of the pure Tb(III) because the effective intramolecular energy transfer from PNNS to Tb(III). The intramolecular energy transfer efficiency from PNNS to Tb(III) reaches 50%. The fluorescence intensity is related the weight ratio of Tb(III) and PNNS in the PNNS-Tb(III) complex. When the weight ratio of Tb(III) and the PNNS is 12 wt%, the enhancement of the emission fluorescence intensity at 545 nm is highest. This novel fluorescence characterization of the PNNS-Tb(III) complex may be useful in the fluorescence systems and the biomedical field.  相似文献   

18.
A novel functional complex with the thermosensitive, magnetic, and fluorescent properties of poly(N‐isopropylacrylamide)‐grafted poly(N‐isopropylacrylamide‐co‐styrene) (PNNS) microspheres and Tb(III), PNNS–Tb(III), has been synthesized and characterized with different techniques. When PNNS with a core–shell structure interacts with Tb(III), Tb(III) mainly bonds to oxygen of the carbonyl groups of PNNS, forming the novel PNNS–Tb(III) complex. PNNS shows antiferromagnetic behavior, whereas the PNNS–Tb(III) complex exhibits paramagnetic behavior. The saturation magnetization is approximately 50 times higher than that of PNNS. The fluorescence intensity of the PNNS–Tb(III)complex at 545 nm is enhanced as much as 223 times in comparison with that of pure Tb(III). The novel magnetic and fluorescent properties of the PNNS–Tb(III) complex may be useful in biomedicine and fluorescence systems. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3121–3127, 2006  相似文献   

19.
Linked to Alzheimer’s disease (AD), amyloids and tau-protein are known to contain a large number of cysteine (Cys) residues. In addition, certain levels of some common biogenic thiols (cysteine (Cys), homocysteine (Hcy), glutathione (GSH), etc.) in biological fluids are closely related to AD as well as other diseases. Therefore, probes with a selective interaction with the above-mentioned thiols can be used for the monitoring and visualizing changes of (bio)thiols in the biological fluids as well as in the brain of animal models of Alzheimer’s disease. In this study, new Eu(III), Tb(III), Gd(III) and Sm(III) complexes of 2,2′-bipyridine ligands containing TEMPO fragments as receptor units for (bio)thiols are reported. The presence of free radical fragments of the ligand in the complexes was proved by using the electronic paramagnetic resonance (EPR) method. Among all the complexes, the Eu(III) complex turned out to be the most promising one as luminescence- and spin-probe for the detection of biogenic thiols. The EPR and fluorescent titration methods showed the interaction of the resulting complex with free Cys and GSH in solution. To study the practical applicability of the probes for the monitoring of AD in-vivo, by using the above-mentioned Eu(III)-based probe, the staining of the brain of mice with amyloidosis and Vero cell cultures supplemented with the cysteine-enriched medium was studied as well as the fluorescence titration of Bovine Serum Albumin, BSA (as the model for the thiol moieties containing protein), was carried out. Based on the results of fluorescence titration, the formation of a non-covalent inclusion complex between the above-mentioned Eu(III) complex and BSA was suggested.  相似文献   

20.
A family of 3d–4f aggregates have been reported through guiding the dual coordination modes of ligand anion (HL?) and in situ generated ancillary bridge driven self‐assembly coordination responses toward two different types of metal ions. Reactions of lanthanide(III) nitrate (Ln=Gd, Tb, Dy, Ho and Yb), nickel(II) acetate and phenol‐based ditopic ligand anion of 2‐[{(2‐hydroxypropyl)imino}methyl]‐6‐methoxyphenol (H2L) in MeCN‐MeOH (3 : 1) mixture and LiOH provided five new octanuclear Ni‐4f coordination aggregates from two Ni2Ln2 cubanes. Single‐crystal X‐ray diffraction analysis reveals that all the members of the family are isostructural, with the central core formed from the coupling of two distorted [Ni2Ln2O4] heterometallic cubanes [Ni2Ln2(HL)2(μ3‐OH)2(OH)(OAc)4]+ (Ln=Gd ( 1 ), Tb ( 2 ), Dy ( 3 ), Ho ( 4 ) and Yb ( 5 )). Higher coordination demand of 4f ions induced the coupling of the two cubes by (OH)(OAc)2 bridges. Variable temperature magnetic study reveals weak coupling between the Ni2+ and Ln3+ ions. For the Tb ( 2 ) and Dy ( 3 ) analogs, the compounds are SMMs without an applied dc field, whereas the Gd ( 1 ) analogue is not an SMM. The observation revealed thus that the anisotropy of the Ln3+ ions is central to display the SMM behavior within this structurally intriguing family of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号