共查询到20条相似文献,搜索用时 15 毫秒
1.
运用高分辨的H原子里德堡标记飞行时间谱方法, 研究了F+HD→DF+H反应在碰撞能为8.19~18.98 kJ/mol的动力学过程. 获取了产物振转态分辨的微分截面. 在低碰撞能,DF产物主要为后向散射;随着碰撞能的增加侧向散射产物增强. 除了后向和侧向散射产物,还首次观察到了该反应中的DF(v′=4)前向散射产物. 随着碰撞能的增加,DF(v′=4)前向散射产物逐渐增强. 分析了总能量在产物振动、转动和平动中的分配随碰撞能以及散射角的变化;获得了DF产物的振动分支比随碰撞能的变化关系. 同时也对DF(v 相似文献
2.
运用高分辨的H/D原子里德堡标记飞行时间谱方法,研究了F+HD→HF+D反应在5.43~18.73 kJ/mol十个碰撞能下的动力学过程. 获取了产物振转态分辨的微分截面. HF(v′=2)前向产物的强度随着碰撞能的增大而降低,表明随着碰撞能的增大共振贡献减弱. 当碰撞能高于HF(v′=3)产物的阈值能量时,观察到了该产物的前向散射峰. 分析了总能量在产物振动、转动和平动中的分配以及HF产物的振动分支比随碰撞能的变化关系. 相似文献
3.
本文搭建了一套新的实验设备,首次将氢原子里德堡态标记的飞行时间谱技术与激光爆破束源技术相结合,进行超高碰撞能下化学反应的动力学研究.初步进行了F+D_2→DF+D在超高碰撞能23.84 kJ/mol下的实验研究.在研究中应用了两种类型束源:一类是通过激光爆破过程产生的高能F原子束源,另一类是通过液氮冷却脉冲阀而产生的D2束源.实验中探测了反应产物振动态分辨的微分散射截面.结果显示,大部分反应产物DF主要呈现侧向和后向散射分布,而产物DF(v'=4)则主要分布在前向.对前向散射产物DF(v'=4)的动力学来源进行了讨论. 相似文献
4.
本文利用交叉分子束方法和离子速度成像技术,对H+HD→H2+D反应在1.17 eV碰撞能下的态-态反应动力学开展了高分辨实验研究. 实验采用1+1''(真空紫外+紫外)近阈值激光电离方式对反应中的D原子产物进行探测,获得了高角度分辨和高能量分辨的产物离子速度影像,进而精确获得了反应的态-态微分截面. 实验观测到了H2(v''=0,j''=1)和H2(v''=0,j''=3)振转产物角分布中与散射过程的干涉效应相联系的前向散射振荡. 这一研究进一步表明了化学反应微分截面的精确测量在气相态-态反应动力学研究中的重要性. 相似文献
5.
基于氢原子里德堡态飞行时间谱探测方法及多通道探测的优势,利用交叉分子束实验装置系统地研究了低碰撞能3.03∽17.97 meV内的F+HD→DF+H反应. 实验中清楚地观测到来自波恩-奥本海默近似禁阻的反应F*(2P1/2)+HD→DF+H和波恩-奥本海默近似允许的反应F(2P3/2)+HD→DF+H的贡献. 在后向散射方向上,波恩-奥本海默近似禁阻的反应F*(2P1/2))+HD的贡献远远大于波恩-奥本海默近似允许的反应F(2P3/2)+HD,表明非绝热效应在低碰撞能下F+HD→DF+H中扮演着重要角色. 并且,后向散射信号随着碰撞能的降低而单调降低,未出现反应共振的特征. 实验中还获得了低碰撞能3.03∽17.97 meV内波恩-奥本海默近似禁阻的和波恩-奥本海默近似允许的反应微分截面,其中最出乎意料的现象是:随着碰撞能的降低,产物的角分布由后向散射逐渐转变为侧向散射,这可能是在低碰撞下存在的某种未知反应机理引起的. 相似文献
6.
本文利用高分辨的里德堡态氘原子标识-交叉分子束装置,研究了碰撞能为4.5∽6.5 kcal/mol范围内Cl(2P)[Cl(2P3/2)和Cl*(2P1/2)]与D2的反应. 虽然自旋轨道激发态反应Cl*(2P1/2)+D2在波恩-奥本海默(B-O)近似下本应是禁阻的,但实验中观测到了该反应的贡献. 通过测量靠近后向的碰撞能相关的微分散射截面连线,发现低碰撞能下的产物主要来自于B-O近似禁阻的反应Cl*+D2. 随着碰撞能的提高,自旋轨道基态反应Cl+D2的反应性增加明显要比自旋轨道激发态反应Cl*+D2更快,并且在高碰撞能下成为产物的主要来源. 实验结果表明:在低碰撞能下,Cl*中自旋轨道激发态的额外能量,可以帮助B-O近似禁阻的反应Cl*+D2越过势垒;然而当碰撞能接近和高于反应势垒时,B-O近似允许的反应Cl+D2占主导地位. Cl/Cl*+D2反应中B-O近似有效性的特征与其同位素反应Cl/Cl*+H2是一致的. 相似文献
7.
当碰撞能很低,尤其是远低于反应势垒的时候,反应通常经过量子隧穿来进行. 目前,还没有明确的物理图像来描述反应物的转动激发对这类反应过程的影响. 本文基于里德堡态D原子飞行时间谱探测方法,利用多通道探测器交叉分子束装置研究了碰撞能44 cm-1∽164 cm-1下反应F+D2(v=0,j=0,1)→DF(v'')+D的动力学过程,并得到了振动态分辨的微分截面. 在可资用能相等时,通过调控反应的平动能,研究了D2转动激发对于反应的影响,发现反应物的转动比平动更有利于反应的进行. D2的转动激发导致产物DF的角分布和量子态分布发生显著变化. 本工作进一步加深转动激发对于反应的影响的理解,尤其是在反应能量远低于反应势垒的情况下. 相似文献
8.
本文使用交叉分子束方法研究了氟原子和振动激发态氘分子D2(v=1, j=0)的反应. 使用受激拉曼抽运的方法制备了振动激发的D2分子. 实验中未观测到来自于旋轨耦合激发态氟原子F*(2P1/2)与振动激发态D2分子的贡献. 观测到来自于旋轨耦合基态氟原子F(2P3/2)和振动激发态D2的反应信号,相应的产物DF分子布居于v''=2,3,4,5振动态上. 与振动基态反应F+D2(v=1,j=0)相比,振动激发态反应F+D2(v=1,j=0)生成的DF产物转动分布更“热”. 获得了振动激发反应的四个碰撞能在0.32至2.62 kcal/mol范围内的微分反应截面. 在最低的碰撞能0.32 kcal/mol下,所有振动态的DF产物都以后向散射为主. 随着碰撞能的增加,DF产物的角分布逐渐从后向转移到侧向. 测量了DF(v''=5)产物的前向微分散射截面随碰撞能变化的曲线. 前向散射的DF(v''=5)信号出现于1.0 kcal/mol. 在2.62 kcal/mol碰撞能下DF(v''=5)主要为前向散射. 相似文献
9.
采用高分辨的氢原子里德堡态标识的飞行时间谱技术,对F+HD→DF+H反应进行了交叉分子束研究. 在2.51~5.60 kJ/mol的8个碰撞能下,测得了部分转动态分辨的微分截面. 实验结果显示,反应产物角分布表现出显著的后向散射,随着碰撞能的提高,角分布会逐渐变宽. 确定了产物振动态分支比随碰撞能变化的关系. 结果显示产物DF表现出高度振动态反转布居,其中DF(v′=3)态是布居数最高的产物态,在3.97 kJ/mol以上还探测到产物DF(v′=1)的信号. 相似文献
10.
11.
12.
本文利用受激Raman抽运,选择性地制备了C2H2分子电子基态的红外非激活振动能级的单一转动态(X1∑g+,v″2=1,J″=9,11,13),并从紫外激光诱导的A1Au(v′3=1)←X1∑g+(v″2=1)荧光谱,直接测定上述三个转动态的C<
关键词: 相似文献
13.
14.
利用改进型通用交叉分子束装置和脉冲直流放电产生脉冲氟原子束实验方法 ,研究了氟原子和 1,3 丁二烯分子的反应散射 .只有一个脱氢原子反应通道被观测到 ,没有观测到碳碳单键、碳碳双键断裂以及氟化氢分子的生成 .直接测量到反应产物的角度分布和飞行时间质谱 .通过把实验数据从实验室坐标系转化到质心坐标系 ,得到反应产物在不同质心角度下的平动能分布和角度分布 .从反应产物的三维速度分布 角度分布 通量图中 ,得出氟原子和 1,3 丁二烯反应生成氢原子的过程是通过形成了一个长寿命的中间体 相似文献
15.
运用约化维数量子动力学理论,利用含时波包法,对反应D+CD4→CD3+D2进行了四维量子散射计算.将反应多原子CD4看作双原子D—CD 3,反应D+CD4→CD3+D2看作单原子-双原 子反应,把体系的反应简化为四维散射问题. 波函数的传播采用分裂算符法,为避免格点边界处含时波函数的边界反射,采用了光学吸收 势法,在格点边界处引入光学势,消除边界反射.根据CD4分子的C3v对称性, 选取了Jordan和Gilbert提出的半经验势能面.计算结果表明,反应概率随平动能的变化图像 ,呈现出显著的量子共振特性,这是很多提取反应的共同特征.而不同振动态下的反应概率 随平动能的变化表明,随振动量子数的增大,反应概率有明显提高,且反应阈能明显降低, 这说明反应分子的振动能对分子的碰撞反应有重要贡献.而对基态和第一振动激发态时散射 截面的计算,也证明了这一结论.同时,还分别通过计算量子数j,k,m对反应概率的影响, 对该反应的空间取向效应进行了研究,并与H+CH4→CH3+H2 sub>反应进行了比较.
关键词:
含时波包
量子散射
反应概率 相似文献
16.
17.
18.
采用激光分子束外延方法,以烧结α-Fe2O3/为靶材,在MgO(100)基底上制备了Fe3O4薄膜。通过反射高能电子衍射原位观察了薄膜生长前后的表面结构,结果表明所生长的Fe3O4薄膜表面平整。经显微激光拉曼光谱和X光电子能谱分析证实所得薄膜表面成分为纯相Fe3O4。磁电学性能采用多功能物性系统测量,结果表明:当温度降至100 K附近时,薄膜电阻率有较大增加,Verwey相转变的范围变宽而且不明显,说明反向晶粒边界的存在;在7 160 kA·m-1的磁场下,室温磁电阻达到-6.9%,在80和150 K温度下磁电阻分别达到-10.5%和-16.1%;薄膜的室温饱和磁化强度约为260 kA·m-1,其矫顽磁场约为202 kA·m-1。 相似文献
19.
在超高真空中采用分子束外延(molecular beam epitaxial)技术进行C60分子在硅(111)-7×7表面的生长,并利用扫描隧道显微镜进行原位研究.室温下,相对于无层错半胞(unfaulted half unit cell),C60更易于吸附在有层错半胞(faulted half unit cell).表面台阶处的电子悬挂键密度最高,通过控制温度和时间进行退火处理后,C60分子会向着台阶的方向扩散并聚集.测量分子在不同吸附位
关键词:
60分子')" href="#">C60分子
分子束外延
Si(111)-7×7
超高真空扫描隧道显微镜 相似文献
20.
采用准经典轨线(QCT)方法计算了F+HD→DF+H反应体系的立体动力学. 基于由 Alexander等人开发的势能面 (J. Chem. Phys. 113 (2000) 11084), 计算了该体系在碰撞能3.987Kcal/mol时的反应矢量相关性质,计算了极化微分反应截面(PDDCSs)随产物各振动量子数变量的变化.此外我们还计算了极角、方位角,讨论了产物的矢量性质. 计算结果验证了产物DF的前向散射性质,表明反应物转动量子数对该反应的矢量性有影响,同时本文也讨论了产物转动量子数 j''的定向问题. 相似文献