首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Molten-salt-based nanofluids and ionic-liquid-based nanofluids are developed for thermal storage and heat transfer at relatively high temperatures, in the past few years. Preparation and stabilization techniques are briefly introduced firstly, and then, thermal properties, e.g., specific heat, thermal conductivity and viscosity, are summarized and discussed in detail. The properties are not only affected by the characteristics of nanomaterials and base fluids, but also affected by the synthesis method, such as the sonication intensity and duration. Some of the thermophysical property data are still incomplete, especially the thermal conductivity of molten-salt-based nanofluids, and properties of ionic-liquid-based nanofluids at high temperatures. While several literature works show that the Krieger–Dougherty model can well predict the viscosity, no general models for thermal conductivity and specific heat have been developed yet for both types of nanofluids.

  相似文献   

2.
《印度化学会志》2021,98(3):100037
In recent years, research on heat transfer and related equipment has been one of the topics of interest in many different industries. The use of conventional fluids in heat transfer due to their low thermal properties has created problems in this area, so the use of nanofluids in many cases has been a solution to overcome this problem. The parameters affecting the thermophysical and thermal properties of nanofluids are temperature, concentration, size, shape, pH, surfactant and ultrasonic time, among which temperature and concentration have the greatest effect. Existing models and studies in the field of nanofluids are limited to the type of nanoparticles and base fluids and their operating range, and there is no comprehensive model for predicting thermal properties. In the present study, models and theories regarding the determination of thermal conductivity of nanofluids and other thermophysical properties have been comprehensively compiled and the mechanisms for increasing the thermal properties as well as the effective parameters and the effect of each of them on improving the properties are presented. In general, the results showed that thermal properties improve with increasing concentration and temperature. Finally, the role of nanofluids effect on thermal performance in the heat exchangers is studied and the results are summarized.  相似文献   

3.
This research aimed to evaluate the thermal viscosity, stability, conductivity and density of coolants including PEG-functionalized graphene nanoplatelets (GNPs) and gum Arabic (GA)-treated GNPs as a base fluid at various temperatures and concentrations. The present study explores the impacts of GNPs functionalized with poly ethylene glycol (PEG) on the colloidal stability and thermophysical properties of water-based PEG-functionalized GNPs suspensions as a new generation of heat transfer fluids. To this end, PEG-functionalized GNPs as a covalent sample and GA-treated GNPs were synthesized and their colloidal stabilities were traced via UV–vis spectrometry. After functionalized, colloidal stability results indicate less sedimentation for covalent samples (less than 10%) that that of noncovalent one (almost 20%) after a 15-day period. In addition, all the thermophysical properties e.g. thermal conductivity, density and viscosity were measured experimentally. Further, it has shown that by loading PEG-functionalized GNPs in the water, the increasing rate of the density and viscosity is not significant, while water-based GA-treated GNPs nanofluids showed higher rates of increase. Interestingly, the water-based PEG-functionalized GNP nanofluids at very low concentration significantly increase the thermal conductivity in comparison with that of non-covalent nanofluid at the same concentration and temperature and defiantly water.  相似文献   

4.

Operating fluids play an important role in heat transfer equipment. Water is inexpensive popular operating fluid with extensive applications, but its thermophysical properties are not good enough, especially for high temperature processes. Therefore, modification of its inherent characteristics by adding nano-sized solid particles found high popularities. Thermal conductivity is one of the most important thermophysical properties of an operating fluid in relatively all energy-based processes. Variation of thermal conductivity of nanofluids with different operating conditions is required to be understood in such processes. Therefore, the focus of this study is concentrated on modeling of thermal conductivity of water-alumina nanofluids using four different smart paradigms. Multilayer perceptron, radial basis function, cascade feedforward, and generalized regression neural networks are employed for the considered task. The best structure of these paradigms is determined, and then, their accuracies are compared using different statistical indices. Accuracy analyses confirmed that the generalized regression neural network outperforms other considered smart methodologies. It predicted more than 280 experimental datasets with excellent absolute average relative deviation?=?0.71%, mean square error?=?0.0006, root mean square error?=?0.023 and regression coefficient (R2)?=?0.9675. In the final stage, the proposed paradigm is used for investigation of the effect of influential parameters on the thermal conductivity of water-alumina nanofluids. This type of accurate and straightforward paradigm can broaden our insight about thermal behavior of homogeneous suspension of nano-size alumina particles in water.

  相似文献   

5.
Tungsten selenide belongs to the family of inorganic compounds denominated transition metal dichalcogenides (TMDCs). There is emerging interest in these compounds in the field of optoelectronics, catalysis, sensing or energy storage, among others. Most works focus on the use of these materials in their 2D form but there is scarce research on the study of TMDCs nanomaterials with one-dimensional morphology. In this work, we explore the thermophysical properties of nanofluids based on 1D-WSe2 nanostructures with the aim of studying the feasibility of these nanofluids as heat transfer fluids in concentrating solar power plants. In this respect, nanofluids with a high heat transfer rate could increase the thermal efficiency of solar power plants, which would reduce the energy dependence on fossil fuels. Nanofluids of 0.02 wt%, 0.05 wt% and 0.10 wt% WSe2 concentrations have been prepared by the two-step method considering a thermal fluid used in solar power plants as the base fluid. The results of extinction coefficient evolution, ζ potential and particle size in suspension show a high colloidal stability over time of the prepared nanofluids mainly because of the high aspect ratio of the 1D-WSe2 nanomaterial. Additionally, the one-dimensionality and length of the synthesized nanowires favors the transport of heat in controlled directions, obtaining increases in thermal conductivity with respect to the base fluid of up to 16.8% in the highest concentration nanofluid. Improvements in isobaric specific heat of up to 15.7% and heat transfer of up to 20.8% compared to the base fluid have also been found. The results of this paper provide evidence that the presence of WSe2 nanowires induces increases in the thermal properties of the fluid commonly used in concentrating solar power plants without inducing agglomeration or sedimentation problems. Therefore, the nanofluids based on 1D-WSe2 nanostructures prepared in this work have a high potential to be used as heat transfer fluids in concentrating solar power plants based on parabolic trough collectors.  相似文献   

6.
The heat transfer properties of synthetic oil (Therminol 66) used for high temperature applications was improved by introducing 15 nm silicon dioxide nanoparticles. Stable suspensions of inorganic nanoparticles in the non-polar fluid were prepared using a cationic surfactant (benzalkonium chloride). The effects of nanoparticle and surfactant concentrations on thermo-physical properties (viscosity, thermal conductivity and total heat absorption) of these nanofluids were investigated in a wide temperature range. The surfactant-to-nanoparticle (SN) ratio was optimized for higher thermal conductivity and lower viscosity, which are both critical for the efficiency of heat transfer. The rheological behavior of SiO(2)/TH66 nanofluids was correlated to average agglomerate sizes, which were shown to vary with SN ratio and temperature. The conditions of ultrasonic treatment were studied and the temporary decrease of agglomerate size from an equilibrium size (characteristic to SN ratio) was demonstrated. The heat transfer efficiencies were estimated for the formulated nanofluids for both turbulent and laminar flow regimes and were compared to the performance of the base fluid.  相似文献   

7.

Present experimental investigation incorporates characterization of Al nanopowder, synthesis of Al/water nanofluids, and effect of these nanofluids on thermal performance of compact heat exchanger. Al nanoparticles are characterized using TEM and XRD. Al/water nanofluid is prepared by dispersing metal basis aluminium nanoparticles of average 100 nm size into double distilled water at two different particle volume concentrations of 0.1 and 0.2%. The nanofluids are prepared by two-step method and cetyl trimethyl ammonium bromide surfactant is used to stabilize the nanofluid. Thermo-physical properties of nanofluids at two different concentrations and their variation with fluid temperature are measured experimentally. It is examined that thermal conductivity, viscosity, and density of the nanofluid increased with the increase of volume concentrations. Furthermore, by increasing the fluid temperature, thermal conductivity is intensified, while the viscosity and density are decreased. Heat transfer parameters are strong functions of these thermo-physical properties. Therefore, comprehensive findings on heat transfer coefficient, Nusselt number, colburn factor, friction factor, and effectiveness are determined experimentally for prepared nanofluids passing under laminar conditions through single-pass cross-flow compact heat exchanger attached with multi-louvered fins.

  相似文献   

8.
Novel alkylammonium-cation-based protic acid ionic liquids (PILs) were prepared through a simple and atom-economic neutralization reaction between an amine, such as diisopropylmethylamine, and diisopropylethylamine, and a Br?nsted acid, HX, where X is HCOO-, CH 3COO-, or HF2-. The density, viscosity, acidic scale, electrochemical window, temperature dependency of ionic conductivity, and thermal properties of these PILs were measured and investigated in detail. Results show that protonated alkylammonium such as N-ethyldiisopropyl formate and N-methyldiisopropyl formate are liquid at room temperature and possess very low viscosities, that is, 18 and 24 cP, respectively, at 25 degrees C. An investigation of their thermal properties shows that they present a wide liquid range up to -100 degrees C and a heat thermal stability up to 350 degrees C. Alkylammonium-based PILs have a relatively low cost and low toxicity and show a high ionic conductivity (up a 8 mS cm(-1)) at room temperature. They have wide applicable perspectives for fuel cell devices, thermal transfer fluids, and acid-catalyzed reaction media and catalysts as replacements of conventional inorganic acids.  相似文献   

9.
The synthesis of new ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions is described. The physico-chemical properties (conductivity, viscosity, electrochemical and thermal stability) of this new generation of ionic liquids (molten salts) are discussed. FAP-ionic liquids show an excellent hydrolytic stability, low viscosity and high electrochemical and thermal stability that makes them attractive for use in electrochemical devices and as a new media for application in modern technologies and chemical synthesis.  相似文献   

10.
Nanofluids having high thermal conductivity enhancement relative to conventional pure fluids are fluids engineered by suspending solid nanoparticles into base fluids. In the present study, calculating the Van der Waals interaction energy between a nanoparticle and an ordered liquid nanolayer around it, the nanolayer thickness was determined, the average velocity of the Brownian motion of nanoparticles in a fluid was estimated, and by taking into account both the aggregation of nanoparticles and the presence of a nanolayer a new thermal conductivity model for nanofluids was proposed. It has been shown that the nanolayer thickness in nanofluids is independent on the radius of nanoparticles when the radius of the nanoparticles is much greater than the nanolayer thickness and determines by the specific interaction of the given liquid and solid nanoparticle through the Hamaker constant, the surface tension and the wetting angle. It was proved that the frequency of heat exchange by fluid molecules is two orders of magnitude higher than the frequency of heat transfer by nanoparticles, so that the contribution due to the Brownian motion of nanoparticles in the thermal conductivity of nanofluids can be neglected. The predictions of the proposed model of thermal conductivity were compared with the experimental data and a good correlation was achieved.  相似文献   

11.
Obviously, the behavior of thermophysical properties of covalently functionalized CNT-based water and -based ethylene glycol (EG) nanofluids cannot be predicted from the predicted models. We present a study of the specific heat capacity, effective thermal conductivity, density, and viscosity of coolants containing functionalized multi-walled carbon nanotubes (CNT-COOH) with carboxylic acid groups at different temperatures. After synthesizing of CNT-COOH-based water and CNT-COOH-based EG nanofluids, measurements on the prepared coolant were made at various concentrations by different experimental methods. While the thermal conductivity of both nanofluids illustrated a significant increase, the specific heat capacity of both samples showed a downward behavior with increasing temperature. Although the thermal conductivity of CNT-COOH-based water nanofluids is bigger than CNT-COOH-based EG nanofluids, CNT-COOH-based water has weaker temperature dependence than that of the CNT-COOH-based EG nanofluids. The viscosity was investigated in different shear rates and temperatures. It is noteworthy that CNT-COOH-based EG nanofluids show relatively a non-Newtonian behavior. Interestingly, specific heat capacities of both prepared nanofluids were decreased with increasing concentration. Also, the density of the CNT-COOH-based water and -based EG nanofluids increased and decreased smoothly with increasing CNT-COOH concentration and temperature, respectively.  相似文献   

12.
The physicochemical characterization of six alkylammonium-based protic ionic liquids (PILs) is presented. These compounds were prepared through a simple and atom-economic neutralization reaction between a tertiary amine and a Br?nsted acid, HX, where X- is HCOO-, CH3COO-, HF2-. The temperature dependency and the effect of added water on properties such as density, viscosity, ionic conductivity, and the thermal comportment of these PILs were measured and investigated. The results allowed us to classify them according to a classical Walden diagram and to appreciate their great "fragility". PILs have applicable perspectives in replacements of conventional inorganic acids for fuel cell devices and thermal transfer fluids.  相似文献   

13.
Ionic liquid-based stable nanofluids containing gold nanoparticles   总被引:1,自引:0,他引:1  
A one-phase and/or two-phase method were used to prepare the stable ionic liquid-based nanofluids containing same volume fraction but different sizes or surface states of gold nanoparticles (Au NPs) and their thermal conductivities were investigated in more detail. Five significant experiment parameters, i.e. temperature, dispersion condition, particle size and surface state, and viscosity of base liquid, were evaluated to supply experimental explanations for heat transport mechanisms. The conspicuously temperature-dependent and greatly enhanced thermal conductivity under high temperatures verify that Brownian motion should be one key effect factor in the heat transport processes of ionic liquid-based gold nanofluids. While the positive influences of proper aggregation and the optimized particle size on their thermal conductivity enhancements under some specific conditions demonstrate that clustering may be another critical effect factor in heat transport processes. Moreover, the remarkable difference of the thermal conductivity enhancements of the nanofluids containing Au NPs with different surface states could be attributed to the surface state which has a strong correlation with not only Brownian motion but also clustering. Whilst the close relationship between their thermal conductivity enhancements and the viscosity of base liquid further indicate Brownian motion must occupy the leading position among various influencing factors. Finally, a promisingly synergistic effect of Brownian motion and clustering based on experimental clues and theoretical analyses was first proposed, justifying different mechanisms are sure related. The results may shed lights on comprehensive understanding of heat transport mechanisms in nanofluids.  相似文献   

14.
Turbulent convective heat transfer of graphene–water nanofluids with various concentrations inside a uniformly heated circular tube is studied experimentally. For this purpose, experiments are conducted to measure thermal conductivity, viscosity, pressure drop, and heat transfer coefficient. Results show enhancement of thermal conductivity and moderate increment of viscosity with addition of low amounts of nanoparticles. Moreover, heat transfer coefficient shows relatively high augmentation, and pressure drop remains unchanged. The maximum enhancements are 10.30%, 4.95%, and 6.04% for thermal conductivity, viscosity, and heat transfer coefficient, respectively. UV–Vis spectroscopy results show that the nanofluids are highly stable.  相似文献   

15.
New pyrrolidinium-cation-based protic acid ionic liquids (PILs) were prepared through a simple and atom-economic neutralization reactions between pyrrolidine and Br?nsted acids, HX, where X is NO 3 (-), HSO 4 (-), HCOO (-), CH 3COO (-) or CF 3COO (-) and CH 3(CH 2) 6COO (-). The thermal properties, densities, electrochemical windows, temperature dependency of dynamic viscosity and ionic conductivity were measured for these PILs. All protonated pyrrolidinium salts studied here were liquid at room temperature and possess a high ionic conductivity (up to 56 mS cm (-1)) at room temperature. Pyrrolidinium based PILs have a relatively low cost, a low toxicity and exhibit a large electrochemical window as compared to other protic ionic liquids (up 3 V). Obtained results allow us to classify them according to a classical Walden diagram and to determinate their "Fragility". Pyrrolidinium based PILs are good or superionic liquids and shows extremely fragility. They have wide applicable perspectives for fuel cell devices, thermal transfer fluids, and acid-catalyzed reaction media as replacements of conventional inorganic acids.  相似文献   

16.
Journal of Thermal Analysis and Calorimetry - Due to the enhanced thermophysical specifications of nanofluids, such as thermal conductivity, these types of fluids are appropriate candidates for...  相似文献   

17.
A series of solvent-free ionic silica (SiO2) nanofluids of 12.3–17.3 nm in diameter were synthesized by surface functionalizing nanoscale SiO2 with a charged corona and ionically tethering with oligomeric chains as canopy. The structure and properties of the nanofluids were systematically characterized by Fourier transform infrared (FTIR), differential scanning calorimeter (DSC), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and rheology tests. The resultant nanofluids with low-molecular-weight oligomeric as canopy are homogeneous, stable yellow-like fluids with no evidence of phase separation at room temperature, while other nanofluids containing high-molecular-weight as canopy behave like a soft glassy, and they exhibit fluidity with still high modulus and viscosity above 60°C. For deeper understanding of the nature of SiO2 nanofluids, the rheological behavior, thermal stability, as well as morphology of SiO2 nanofluids were investigated in details. The flow properties of nanofluids could be easily regulated from soft glassy to free flowing liquids by varying the molecule weight of canopy. Most importantly, the thermal stability, rheological behavior, as well as morphology can be also regulated through varying molecule weight and thickness of canopy, which will guide our future work on synthesis of nanofluids with controllable physical properties.  相似文献   

18.
Novel lactam-cation-based Br?nsted acid ionic liquids (ILs) were prepared through a simple and atom-economic neutralization reaction between a lactam, such as caprolactam and butyrolactam, and a Br?nsted acid, HX, where X is BF4-, CF3COO-, phCOO-, ClCH2COO-, NO3-, or H2PO4-. The density, viscosity, acidic scale, electrochemical window, temperature dependency of ionic conductivity, and thermal property of these ILs were measured and investigated in detail. The results show that protonated caprolactam tetrafluoroborate (CPBF) has a relatively strong acidity with -0.22 of Hammett acidic scale H0 and caprolactam trifluoroacetate (CPTFA) and pyrrolidonium trifluoroacetate (PYTFA) ILs possess very low viscosities, that is, 28 cP and 11 cP, respectively. An investigation of thermal property showed that a wide liquid range (up to -90 degrees C), moderate thermal stability (up to 249 degrees C for 10% of decomposition), and complex polymorphism were observed in these ILs. In comparison to imidazolium-cation-based ILs, the lactam-cation-based Br?nsted acid ILs have a relatively lower cost, lower toxicity, and comparable ion conductivity and heat storage density (more than 200 MJ/m3). They have wide applicable perspectives for fuel cell devices, thermal transfer fluids, and acid-catalyzed reaction media and catalysts as replacements of conventional inorganic acids.  相似文献   

19.
Power transformers play a key role in power and electrical industries and thus boosting their efficiency is necessary. In this study, the effect of oxidized multi-walled carbon nanotubes on transformer oil thermophysical properties was experimentally investigated. The maximum amount of carbon nanotubes was chosen up to 0.01 mass% to assure the maximum purity of transformer oil. Heat transfer characteristics of transformer oil and nanofluids in two cases of free and forced convection were studied. Breakdown voltage, flash point, pour point, density, electrical and thermal conductivities, viscosity and shear stress, as eight important quality parameters, were determined. According to the experimental results, the Breakdown voltage decreased through concentration increasing. Electrical conductivity is not changed considerable with increasing concentration and temperature. Thermal conductivity of nanofluids and transformer oil changed with increasing temperature and concentration. Furthermore, at all concentrations and temperatures, the viscosity of the nanofluids was lower than that of transformer oil.  相似文献   

20.
The present article reviews the test techniques for some of the important heat transport properties of oils such as viscosity, density, specific heat capacity and thermal conductivity mainly used for characterization of heat transfer fluids. It can be seen that while density of oils can be tested at higher temperatures, the other heat transport properties of oils like viscosity, specific heat capacity and thermal conductivity have a limitation of being tested at low temperatures below 100–150 °C. While quite a few number of researchers have reported evaluation of heat transfer properties like specific heat capacity and thermal conductivity of oils by different methods, there remains a huge scope of debate and discussions on the repeatability and reproducibility of such tests, especially in case of oils used in high-temperature applications. A lot of insight has been gathered with respect to testing of thermal conductivity of oils, and several common test methods have been compared with each other. Lastly, two mathematical models, reported in the literature in open domain, have been reviewed and compared with each other. If the oils are to be used at elevated temperatures, like heat transfer fluids used in concentrated solar power generation where temperatures go as high as 400 °C and beyond, there is an urgent need to standardize a laboratory test method for performance evaluation of heat transport properties, which can help in formulating new generation oils based on novel chemistries and technologies like nanofluids, synthetic oils of novel chemistries, molten salts and molten metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号