首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Controlling the water exchange kinetics of macrocyclic Gd(3+) chelates, a key parameter in the design of improved magnetic resonance imaging (MRI) contrast media, may be facilitated by selecting the coordination geometry of the chelate. The water exchange kinetics of the mono- capped twisted square antiprism (TSAP) being much closer to optimal than those of the mono capped square antiprism (SAP) render the TSAP isomer more desirable for high relaxivity applications. Two systems have been developed that allow for selection of the TSAP coordination geometry in 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-type Gd(3+) chelates, both based upon the macrocycle nitrobenzyl cyclen. In this paper we report investigations into the stability and formation of these chelates. Particular focus is given to the production of two regioisomeric chelates during the chelation reaction. These regioisomers are distinguished by having the nitrobenzyl substituent either on a corner or on the side of the macrocyclic ring. The origin of these two regioisomers appears to stem from a conformation of the ligand in solution in which it is hypothesized that pendant arms lie both above and below the plane of the macrocycle. The conformational changes that then result during the formation of the intermediate H(2)GdL(+) chelate give rise to differing positions of the nitrobenzyl substituent depending upon from which face of the macrocycle the Ln(3+) approaches the ligand.  相似文献   

2.
The vibrational spectra of ethyl vinyl ether in both the fluid and solid states have been recorded from 20 to 3500 cm?1. The 33 fundamental modes of vibration have been assigned. Three rotational isomers have been observed and their structures have been determined. The most stable conformer, s-cis/s-trans, is planar and of Cs symmetry. The two less stable rotamers, skew/s-trans and skew/gauche, are non-planar and of Ci molecular symmetry. The barrier to internal rotation of the methyl rotor has been determined for each conformation; these barriers are 3.43 kcal mol?1 (s-cis/s-trans), 3.35 kcal mol?1 (skew/s-trans) and 3.19 kcal mol?1 (skew/gauche). A potential function for each of the two asymmetric internal rotations has been calculated and barriers to conformer interconversion have been determined. From the asymmetric potential function calculations, ΔH, the enthalpy difference between the conformers, has been determined. The s-cis/s-trans conformer is 1.87 kcal mol?1 more stable than the skew/s-trans conformer; the skew/s-trans conformer is more stable than the skew/gauche conformer by 1.10 kcal mol?1. The energetics of conformer interconversion and methyl internal rotation have been described in terms of molecular geometry and non-bonded interactions. These results are compared to those found in other alkyl vinyl and dialkyl ethers.  相似文献   

3.
Density functional theory calculations were carried out to investigate structures and stabilities of tropone and troponeiron complexes, (tropone)Fe(CO)3, (tropone)Fe(CO)2(PH3) and (tropone)Fe(PH3)3, and their protonated species. The results show that the oxygen-protonated tropone is more stable than the carbon-protonated tropone. On the contrary, in the troponeiron complexes, the carbon protonated species are more stable than the oxygen protonated species. In the neutral and oxygen-protonated complexes, the tropone and oxygen-protonated tropone ligands are η4-coordinated. In the carbon-protonated complexes, the carbon-protonated tropone ligand is η5-coordinated. The results also show that the metal shift for complexes containing phosphine ligands is more difficult than that for those containing carbonyl ligands. For the neutral methyl-substituted troponeiron complexes, steric effect was found to play a key role in determining the relative stability of the regioisomers. For their protonated species, the electron-donating properties of the methyl substituent(s) were found to be important in determining the relative stability among the different regioiosmers.  相似文献   

4.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

5.
Ion mobility-mass spectrometry is used to study the new conformers of bovine ubiquitin (Ub) and the palladium(II) binding sites after the incubation with cis-[Pd(en)(H2O)2]2+ where en = ethylenediamine. Palladium(II) complexes are potentially useful proteomic reagents because they selectively bind to the side groups of methionine and histidine and hydrolytically cleave the peptide bond. Incubating 1.0 mM solution of Ub with 10.0 molar excess of cis-[Pd(en)(H2O)2]2+ results with one to four Pd2+ or Pd(en)2+ being attached to intact Ub and two conformer families at each of the 4+ to 11+ charge states. The 4+ and 5+ species exhibit a compact form, which is also observed in untreated Ub, and a new highly folded conformer. The 6+ to 10+ exhibit an elongated form, also observed in Ub, and a new partially folded conformer. The new conformers are shown to be more stable if they contain at least one Pd2+, rather than all Pd(en)2+. IM-MS/MS of [UbPd2en+5H]9+ shows that both the partially folded and elongated conformers first lose the en ligand, followed by dissociating into product ions that indicate that Met1, Glu51/Asp52, His68, and Glu16 are binding sites for Pd2+. These results suggest that Pd2+ is simultaneously binding to multiple side groups across different regions of Ub. This type of sequestering of Pd2+ probably reduces the efficiency of Pd2+ ions to selectively cleave Ub because it prevents Pd2+ anchoring to only Met or His and to an adjacent backbone amide nitrogen and forming the “activated complex” necessary for specific peptide bond cleavage.  相似文献   

6.
7.
The infrared (3500 to 40 cm−1) and Raman (3500 to 10 cm−1) spectra have been recorded for the gaseous and solid phases of ethyldichlorophosphine, CH3CH2PCl2, and CD3CD2PCl2. Additionally, the Raman spectra of the liquids were recorded and qualitative depolarization values were obtained. In the spectrum of the gas the gauche conformer is predominant with about 65% abundance whereas in the spectrum of the liquid at ambient temperature the amount of gauche conformer is reduced compared to the gas phase and at −100°C the trans conformer predominates. The trans conformer is the more stable species in the solid. A variable temperature study was carried out on the Raman spectrum of the liquid and ΔH and ΔS values of 190 ± 30 cm−1 (543 ± 87 cal/mol) and 2.86 ± 0.3 eu were determined, respectively, with the trans conformer being more stable. Similar variable temperature studies have been carried out on a number of conformer peaks in the infrared spectrum of the gas and a ΔH value of 53 ± 38 cm−1 (152 ± 110 cal/mol) was obtained, again with the trans conformer being more stable. All the fundamental modes of both conformers have been assigned utilizing band contours, depolarization values, isotopic shift factors and group frequencies. A normal coordinate calculation has been carried out utilizing a modified valence force field to calculate the frequencies and potential energy distribution for both conformers. The barriers to methyl rotation of the trans and gauche conformers are 2.2 ± 0.1 and 2.3 ± 0.1 kcal/mol, respectively. These results are compared to similar quantities for some corresponding molecules.  相似文献   

8.
The Raman (3200—10cm−1) and infrared (3200—50 cm−1) spectra of gaseous and solid 1-chloro-2-methylpropane and 1-bromo-methylpropane, as well as the Raman spectra of the liquids, have been recorded and assigned. The gauche asymmetric torsion of the 1-chloro-2-methylpropane molecules has been observed at 110 cm−1 in the Raman spectrum of the gas. For the 1-bromo-2-methylpropane molecule, both the trans and gauche asymmetric torsions have been observed at 106.70 and 103.94 cm−1, respectively, along with three additional transitions for the gauche conformer. From these data, the asymmetric potential function for the bromide molecules to V1 = —493 ±16, V2 = 595 ± 18, and V3 = 2006 ± 6 cm−1 with the trans conformer being more stable than the gauche conformer by 44 ± 20 cm−1. The trans form is found experimentally to be more stable in the liquid phase by 30 ± 14 cm−1 (83 ± 40 cal mol−1). From the relative intensities, in the Raman spectra, of the CCl stretches measured as a function of temperature, the gauche conformer of the chloride molecules to be 167 ± 71 cm−1 (479 ± 203 cal mol−1) more stable than the trans conformer in the gas phase, and 73 ± 10 cm−1 (208 ± 29 cal mol−1) more stable in the liquid phase. The methyl torsions for the gauche and trans conformers of both molecules are tentatively assigned in the gas phase and the barriers have been calculated. The results of this study are compared with previous studies on these molecules.  相似文献   

9.
Novel Cu 2+ and Fe 3+ chelates derived from L 1 were synthesized and characterized by single crystal X‐ray diffraction. The results indicate that the Fe (III) crystal, [Fe(L1‐H)Cl2], has an orthorhombic structure of the type pc2b while the dimeric Cu (II) crystal, [Cu(L1‐H)Cl … ClCu(L1‐H)], has a monoclinic with space group Cc. X‐ray diffraction and spectroscopic studies revealed that L 1 acts as monobasic tetradentate with octahedral geometry in Fe (III) crystal while it behaves as dibasic tetradentate with distorted‐octahedral in the Cu (II) crystal. Also, the two chelates were characterized by spectral, magnetic and thermal analyses. DFT parameters were used to prove the liberation of a proton from COOH rather than NH groups. The kinetic and thermodynamic parameters of Fe (III) chelate were determined by Coats‐Redfern and Horowitz‐Metzger methods. Cyclic voltammogram provides information about the oxidation states of Cu (II) and Fe (III) chelates. Antitumor activity against Epitheliod carcinoma (Hela), breast cancer (MCF‐7) and antibacterial activities of chelates were investigated.  相似文献   

10.
Abstract

The chemical and direct electrochemical syntheses of copper, cobalt, nickel and zinc chelates of 2-[N-tosylamine)benzaldoxime (L1H2) and 2-[N-tosylamine)benzal-O-methyloxime (L2H) are reported. On the basis of the elemental analyse IR and EPR spectra and magnetic properties, dimeric structures ML are suggested from L1H2 under the conditions of the chemical synthesis, while electrosynthesis leads to the monomeric complexes M(L1H)2. Using L2H as a ligand, only the chelates ML2 2 are formed, regardless of the method of synthesis.

The copper dimers CuL1 have antiferromagnetic properties, while the chelates M(L1H)2 and ML2 have normal magnetic moments. In agreement with the magnetic properties and literature data on structures of four-coordinate complexes a tetrahedral structure is assigned.  相似文献   

11.
The synthesis of a porphyrin–fullerene dyad with “parachute” topology is reported. To determine whether the dyad is “flexing” at room temperature, low‐temperature NMR experiments were used. Computational modeling has shown the low‐energy conformation of the dyad to be nonsymmetric. Although, 1H NMR spectroscopy at room temperature is consistent with a molecule with C2v symmetry, the spectrum changes on lowering the temperature consistent with “windshield wiper”‐like motion, in which the porphyrin moiety rotates from one side of the C60 sphere to the other. Nanosecond and picosecond fluorescence lifetime experiments show two components contribute to the fluorescence decay, also consistent with the presence of more than one conformer.  相似文献   

12.
Liquid and solid-state infrared spectra were obtained for 1-iodo-2-methylpropane and 1-iodo-3-methylbutane. The C-I stretching bands of the PC and PH' conformers of the propane were observed at 601 and 582 cm?1, respectively, and those of the PC and PH conformers of the butane were observed at 595 and 512 cm?1. Both conformers of each compound are present in the amorphous solid. Only the more sterically hindered PH' conformer is present in the crystalline solid of the propane, and only the PH conformer is present in the crystals of the butane. Vibrational assignments were made for both conformers of each compound with the aid of normal coordinate calculations. The increase in C-I stretching frequency of the PH' conformer of the propane from the normal value in alkyi iodides (from ca. 500 to 582 cm?1) is attributed to the increased contribution of C-C stretch and decreased contribution of C-I stretch.  相似文献   

13.
The Raman (3500–40 cm–1) and infrared (3500–70 cm–1) spectra of gaseous and solid 2-methoxypropene, CH3O(CH3)C=CH2, and the isotopomers, CD3O(CH3)C=CH2 and CH3O(CD3)C=CD2 have been recorded. In addition, the Raman spectra of the liquids have been recorded with qualitative depolarization measurements. All of these data indicate that only one conformer is present in the fluid phases at ambient temperature and this form is the cis conformer, which remains in the solid. Assignments are provided for the fundamentals of all three isotopomers for the cis conformer with Cs symmetry. The far-infrared spectra of all three isotopic species have been recorded at a resolution of 0.1 cm–1 in the gas and 1.0 cm–1 in the solid. The parameters of the potential function governing the asymmetric torsion are determined to be V3 = 1485 ± 9 cm–1 and V6 = –55 ± 4 cm–1 for the d0 compound, where only two terms were determined, since a second conformer was not evident. The barrier to internal rotation for the methyl group attached to the oxygen atom is 1370 ± 8 cm–1 and the C—CH3 barrier is 772 ± 5 cm–1. Ab initio calculations with full electron correlation have been carried out by the perturbation method to second order to obtain the equilibrium structural parameters, harmonic force constants, fundamental frequencies, infrared intensities, Raman activities, depolarization values, and conformational stability. The predicted values have been compared to the experimental values where appropriate.  相似文献   

14.
Summary The chelation abilities of both pyridine-2-aldehyde semicarbazone (Pysc) and thiosemicarbazone (Pytsc) towards NiII and CoII salts have been investigated. A series of pentacoordinate monoligand chelates: Ni(Pysc)X2, Ni(Pytsc)X2 and Co(Pysc)X2 and octahedral bis ligand chelates Ni(Pysc)2X · NO3 Ni(Pytsc)2X2 and Co(Pysc)2X2 have been isolated and identified. In these chelates, both Pysc and Pytsc act as neutral tridentate ligands. The deprotonated form of Pyts, which arises through enolization, is identified in NII chelates and is of the type Ni(PytscH)2 and Ni(PytscH)X. Spectral and magnetic measurements are presented and attention is drawn to the effect of temperature on the solution spectra of some of the chelates.  相似文献   

15.
The crystal structures of chelates formed between each stable paramagnetic lanthanide ion and the octadentate polyamino carboxylate ligand DOTMA are described. A total of 23 individual chelates structures were obtained; in each chelate the coordination geometry around the metal ion is best described as a twisted square antiprism (torsion angle −25.0°–−31.4°). Despite the uniformity of the general coordination geometry provided by the DOTMA ligand, there is a considerable variation in the hydration state of each chelate. The early Ln3+ chelates are associated with a single inner sphere water molecule; the Ln-OH2 interaction is remarkable for being very long. After a clear break at gadolinium, the number of chelates in the unit cell that have a water molecule interacting with the Ln3+ decreases linearly until at Tm3+ no water is found to interact with the metal ion. The Ln-OH2 distance observed in the chelates of the later Ln3+ ions are also extremely long and increase as the ions contract (2.550–2.732 Å). No clear break between hydrated and dehydrated chelates is observed; rather this series of chelates appear to represent a continuum of hydration states in which the ligand gradually closes around the metal ion as its ionic radius decreases (with decreased hydration) and the metal drops down into the coordination cage.  相似文献   

16.
Durig  James R.  Shen  Shiyu 《Structural chemistry》2003,14(2):199-210
Variable temperature (–100 to –150°C) studies of the infrared spectra (3500–400 cm–1) of propenoyl bromide, CH2=CHCBrO, dissolved in liquid krypton, have been carried out. Utilizing six different conformer pairs, an enthalpy difference of 204 ± 20 cm–1 (2.44 ± 0.24 kJ/mol) was obtained, with the anti conformer (carbonyl bond trans to C=C bond) the more stable form. At ambient temperature, there is approximately 28 ± 2% of the syn conformer present. The anti conformer also remains in the infrared and Raman spectra of the polycrystalline solid. The optimal geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies, are reported for both conformers from MP2/6-31G(d) ab initio calculations. The potential function governing the conformational interchange has been obtained from the MP2/6-31G(d) ab initio calculations. The conformational stabilities were calculated from a variety of basis sets and at the highest level of calculations, MP2/6-311 + (2df,2pd), the anti conformer is predicted to be more stable by 178 cm–1, which is in excellent agreement with the experimental results. The r 0 adjusted structural parameters have been obtained for propenoyl fluoride and chloride from a combination of the previously reported microwave rotational constants and ab initio predicted parameters. Several of the parameters for the chloride are significantly different than those proposed from an electron diffraction investigation. The results of these spectroscopic, structural, and theoretical studies are discussed and compared to the corresponding results for some similar molecules.  相似文献   

17.
Solid chelates derived from some alkaline earth and transition metal complexes with ampicillin (Hamp, a) and amoxicillin (Hamox, b) were synthesized and characterized using elemental analysis, molar conductivity, IR, magnetic susceptibility, and thermogravimetric studies. Both drugs behave as tetradentate ligands coordinating to metal through amino, imino, and carboxylate as well as through β-lactamic carbonyl. All chelates have octahedral geometry except Cu(II) complexes which have square planar structure and uranium has pentagonal bipyramidal coordination. 1H- and 13C-NMR of the Zn(II) and UO2(VI) chelates are compared with the free ligands. The antimicrobial activity of the prepared chelates was determined.  相似文献   

18.
The 13C and 17O (natural abundance) chemical shifts of several mono- and di-methyl ring-substituted thiane 1-oxides and thiane 1,1-dioxides are reported. The cis and trans isomers of methyl-substituted thiane 1-oxide are readily identified by 13C and 17O NMR. In particular, the 17O NMR signals of axial SO groups are found several ppm upfield of those of the equatorial counterparts. The proportion of axial and equatorial conformers of thiane 1-oxide in different solvents has been measured by low-temperature 13C NMR. In THF the proportion of the axial conformer is higher than in CD2Cl2 whereas in CDCl3 or CHF2Cl the conformational preference is reversed and the equatorial conformer is slightly favoured.  相似文献   

19.
The Raman (3500-30 cm−1) spectra of liquid and solid and the infrared (3500-40 cm−1) spectra of gaseous and solid 3-methyl-3-butenenitrile, CH2C(CH3)CH2CN, have been recorded. Both cis and gauche conformers have been identified in the fluid phases but only the cis form remains in the solid. Variable temperature (−55 to −100 °C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 163±16 cm−1 (1.20±0.19 kJ mol−1), with the cis conformer the more stable rotamer. It is estimated that there is 48±2% of the gauche conformer present at  25°C. A complete vibrational assignment is proposed for the cis conformer based on infrared band contours, relative intensities, depolarization ratios and group frequencies. Several of the fundamentals for the gauche conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been obtained for both rotamers by ab initio calculations employing the 6-31G(d), 6-311G(d,p), 6-311+G(d,p) and 6-311+G(2d,2p) basis sets at the levels of restricted Hartree-Fock (HF) and/or Møller-Plesset perturbation theory to the second order (MP2). Only with the 6-311G(2d,2p) and 6-311G(2df,2pd) basis sets with or without diffuse functions is the cis conformer predicted to be more stable than the gauche form. The potential energy terms for the conformational interchange have been obtained at the MP2(full)/6-311+G(2d,2p) level, and compared to those obtained from the experimental data. The results are discussed and compared to the corresponding quantities obtained for some similar molecules.  相似文献   

20.
The Raman (3100–10 cm−1) and infrared (3100–30 cm−1) spectra of difluoroacetyl chloride, CHF2CClO, in the gas and solid phases have been recorded. Additionally, the Raman spectrum of the liquid with qualitative depolarization ratios has been obtained. From these data, a trans/gauche equilibrium is proposed in the gas and liquid phases, with the trans conformer (hydrogen atom eclipsing the oxygen atom and trans to the chlorine atom) the more stable form in the gas, but the gauche rotamer is more stable in the liquid and is the only form present in the annealed solid. From the study of the Raman spectrum of the gas at different temperatures, a value of 272 ± 115 cm−1 (778 ± 329 cal mol−1) was determined for ΔH, with the trans conformer the more stable form. Similar studies were carried out on the liquid and a value of 109 ± 9 cm−1 (312 ± 26 cal mol−1) was obtained for ΔH, but now the gauche conformer is the more stable form. A potential function for the conformational interchange has been determined with the following potential constants: V1 = 397 ± 23, V2 = −101 ± 5, V3 = 474 ± 3, V4 = −50 ± 3, and V6 = 10 ± 2 cm−1. This potential has the trans rotamer more stable by 179 ± 31 cm−1 (512 ± 89 cal mol−1) than the gauche conformer. A complete vibrational assignment is proposed for both conformers based on infrared band contours, Raman depolarization data, group frequencies and normal coordinate calculations. The experimental conformational stability, barriers to internal rotation, and fundamental vibrational frequencies are compared with those obtained from ab initio Hartree-Fock gradient calculations employing both the RHF/3-21G* and RHF/6-31G* basis sets, and to the corresponding quantities obtained for some similar molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号