首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The green revolution in plastics should be accelerated due to growing sustainability concerns. Here, we develop a series of chemically recyclable polymers from the first reported cascade polymerization of H2O, COS, and diacrylates. In addition to abundant feedstocks, the method is efficient and air-tolerant, uses common organic bases as catalysts, and yields polymers with high molecular weights under mild conditions. Such polymers, structurally like polyethylene with low-density in-chain polar groups, manifest impressive toughness and ductility comparable to high-density polyethylene. The in-chain ester group acts as a breaking point, enabling these polymers to undergo chemical recycling through two loops. The structures and properties of these polymers also have an immeasurably expanded range owing to the versatility of our method. The readily available raw materials, facile synthesis, and high performance make these polymers promising prospects as sustainable materials in practice.  相似文献   

2.
Chen  Yizhao  He  Benzhao  Qin  Anjun  Tang  Ben Zhong 《中国科学:化学(英文版)》2019,62(8):1017-1022
The Cu(I)-catalyzed alkyne-azide cycloaddition(CuAAC) has been developed into a powerful polymerization reaction for the synthesis of new polytriazoles with versatile properties. However, research on recyclable and reusable copper catalyst for click polymerization to meet the requirement of green chemistry was rarely reported. Copper nanoparticles were reported to be capable catalysts for CuAAC. Replacing conventional copper catalyst with copper nanoparticles may realize the recycle and reuse of the copper catalyst in click polymerization. In this paper, copper nanoparticles were prepared and used as an effective catalyst for click polymerization, and soluble polytriazoles with high molecular weights were obtained in excellent yields under optimized reaction conditions. Importantly, the copper nanoparticles can be recycled and reused for up to 11 times for the click polymerization. Moreover, introducing aggregation-induced emission(AIE)-active moiety of tetraphenylethylene into the monomers makes the resultant polymers retain the AIE feature. This work not only provides an efficient recyclable catalytic system for the azide-alkyne click polymerization, but also might inspire polymer chemists to use recyclable copper species to catalyze other polymerizations.  相似文献   

3.
Designing sustainable materials with tunable mechanical properties, intrinsic degradability, and recyclability from renewable biomass through a mild process has become vital in polymer science. Traditional phenolic resins are generally considered to be not degradable or recyclable. Here we report the design and synthesis of linear and network structured phenolic polymers using facile polycondensation between natural aldehyde-bearing phenolic compounds and polymercaptans. Linear phenolic products are amorphous with Tg between −9 °C and 12 °C. Cross-linked networks from vanillin and its di-aldehyde derivative exhibited excellent mechanical strength between 6–64 MPa. The connecting dithioacetals are associatively adaptable strong bonds and susceptible to degradation in oxidative conditions to regenerate vanillin. These results highlight the potential of biobased sustainable phenolic polymers with recyclability and selective degradation, as a complement to the traditional phenol-formaldehyde resins.  相似文献   

4.
As a consequence of the depleting of fossil reserves and environmental issues, today, plant oils and fatty acids derived therefrom have a respectable status within the polymer chemistry community. However, maximizing the benefits of these renewable feedstocks requires the utilization of sustainable and efficient chemical transformations. The emergence of click chemistry concept and especially the renaissance of thiol‐ene addition reaction have had an impact on the way to make plant oil‐derived polymers. This highlight discusses the applicability and success of thiol‐ene addition and other click reactions in the transformation of oleochemicals into monomers and polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

5.
The limited number of methods to directly polymerize ionic monomers currently hinders rapid diversification and production of ionic polymeric materials, namely anion exchange membranes (AEMs) which are essential components in emerging alkaline fuel cell and electrolyzer technologies. Herein, we report a direct coordination-insertion polymerization of cationic monomers, providing the first direct synthesis of aliphatic polymers with high ion incorporations and allowing facile access to a broad range of materials. We demonstrate the utility of this method by rapidly generating a library of solution processable ionic polymers for use as AEMs. We investigate these materials to study the influence of cation identity on hydroxide conductivity and stability. We found that AEMs with piperidinium cations exhibited the highest performance, with high alkaline stability, hydroxide conductivity of 87 mS cm−1 at 80 °C, and a peak power density of 730 mW cm−2 when integrated into a fuel cell device.  相似文献   

6.
The precise synthesis of miktoarm star polymers (MSPs) remains one of the great challenges in synthetic chemistry due to the difficulty in locating appropriate structural templates and polymer grafting/growing strategies with high selectivity and efficiency. Herein, ≈2 nm metal-organic polyhedra (MOPs), constructed from the coordination of isophthalic acid (IPA) and Cu2+, are applied as templates for the precise synthesis of 24-arm MSPs for their unique logarithmic ligand-exchange dynamics. Six different polymers are prepared with IPA as an end group and they further coordinated with Cu2+ to afford the corresponding 24-arm star homo-polymers. MSPs can be obtained by mixing targeted homo-arm star polymers in solutions upon thermal annealing. The compositions of MSPs can be facilely and precisely tuned by the recipe of the star polymer mixtures used. Interestingly, the obtained MSPs can be sorted into homo-arm star polymers through a typical solvent extraction procedure. The hybridization and sorting process can be reversibly conducted through the cycle of thermal annealing and solvent treatment. The complex coordination framework not only opens new avenues for the facile and precise synthesis of MSPs and MOPs with hybrid functionalities, but also provides the capability to design sustainable polymer systems.  相似文献   

7.
Facile construction of sulfur-rich polymers using readily available raw chemicals is an area aggressively pursued but challenging. Herein we use common feedstocks of ethylene oxide (EO), propylene oxide (PO), and carbonyl sulfide (COS) to synthesize copoly(thioether)s which are traditionally produced from unpleasant and difficult to store episulfides. In this protocol, the EO/COS coupling selectively generates a pure poly(ethylene sulfide) (PES) with melting temperature (Tm) values up to 172°C and high yields up to 98%. The EO/PO/COS terpolymerization leads to the incorporation of soft poly(propylene sulfide) (PPS) and hard PES segments together, affording a random PES-co-PPS copoly(thioether) with the complete consumption of EO and PO. Additionally, by simply varying the EO/PO feeding ratio, the obtained copoly(thioether)s possess tunable thermal properties, Tm values in the range of 76–144°C, and excellent solubility. These copolymerizations are conducted in one-pot/one-step at industrially favored reaction temperatures of 100–120°C using catalysts of common organic bases, suggesting a facile and practical manner. Especially, the copoly(thioether) exhibits high refractive indices up to 1.68 owing to its high sulfur content, suggesting a broad application prospect in optical materials.  相似文献   

8.
环状聚合物具有不同于线性高分子的独特性质,是一类具有应用前景的新型聚合物材料,但复杂的结构导致其合成过程复杂繁琐."点击"化学由于其高效、可靠、高选择性的特点已成为拓扑高分子合成的新方法,活性自由基聚合(ATRP、RAFT和NMP)具有聚合物结构可控等特点,二者联用为环状聚合物的合成拓宽了思路.本文就近几年"点击"反应、"点击"反应与活性自由基聚合联用以及其他方法联用在环状聚合物中的应用进行综述."点击"反应与这些方法的结合将在功能性环状聚合物的设计与合成中发挥积极的作用.  相似文献   

9.
熊兴泉  唐忠科  蔡雷 《化学进展》2012,(9):1751-1764
可逆加成-裂解链转移聚合(RAFT)由于单体适用面广、聚合条件温和、不受聚合方法的限制等特性, 已经成为活性合成聚合物的有效手段之一。点击化学(click chemistry)由于具有良好的选择性、模块性以及官能团耐受性等特点迅速成为许多研究领域,如药物、聚合物、功能材料等合成的有力工具,同时涌现出了多种基于巯基的点击反应。本文综述了近年来基于巯基的点击反应, 如巯基-烯、巯基-炔、巯基-异氰酸酯、巯基-环氧化物以及巯基-卤代烃等新型点击反应与RAFT聚合相结合在功能性聚合物的制备和修饰中的应用, 相信这两种手段的结合将在其中发挥积极的作用。  相似文献   

10.
11.
We report a new approach for the facile synthesis of high-order multiblock copolymers comprising very short blocks. The approach entails sequential addition of different monomers via an iterative single electron transfer-living radical polymerization technique, allowing nearly perfect control of the copolymer microstructure. It is possible to synthesize high-order multiblock copolymers with unprecedented control, i.e., A-B-C-D-E-etc., without any need for purification between iterative 24 h block formation steps. To illustrate this concept, we report the synthesis of model P(MA-b-MA...) homopolymer and P(MA-b-nBuA-b-EA-b-2EHA-b-EA-b-nBuA) copolymer in extremely high yield. Finally, the halide end-group can be modified via "click chemistry", including thiol-bromide click chemistry, sodium methanethiosulfonate nucleophilic substitution, and atom transfer radical nitroxide coupling reaction, to yield functional, structurally complex macromolecules.  相似文献   

12.
It is of great significance to depolymerize used or waste polymers to recover the starting monomers suitable for repolymerization reactions that reform recycled materials no different from the virgin polymer. Herein, we report a novel recyclable plastic: degradable polycarbonate synthesized by dinuclear chromium‐complex‐mediated copolymerization of CO2 with 1‐benzyloxycarbonyl‐3,4‐epoxy pyrrolidine, a meso ‐epoxide. Notably, the novel polycarbonate with more than 99 % carbonate linkages could be recycled back into the epoxide monomer in quantitative yield under mild reaction conditions. Remarkably, the copolymerization/depolymerization processes can be achieved by the ON/OFF reversible temperature switch, and recycled several times without any change in the epoxide monomer and copolymer. These characteristics accord well with the concept of perfectly sustainable polymers.  相似文献   

13.
This article reports a new one‐pot method for polymer preparation, which involves double click chemistry. In one pot, two click reactions take place sequentially by adding the reactants step by step. The first click reaction is to produce the monomer for the second click reaction for polymerization. The click polymerization differs from the general click polymerization with the reaction of diazides and dialkynes. Nitrile oxides, produced in situ by the first click reaction of the formation of aldoxime, instead azides, avoiding the poisonousness and explosiveness of azides and being much safer and easy to operate. And 3,5‐disubstitute polyisoxazoles are produced by the copper(I)‐catalyzed the 1,3‐dipolar cycloaddition of nitrile oxides with alkynes in high yields by our one‐pot method. The resulting polyisoxazoles agree well with the structural assignment obtained by the 1H NMR and IR analyses, with high molecular weights, narrow molecular weight distribution (Mw/Mn < 1.2) and high regioregularity. The poor solubility of these polymers is found to be caused by their crystallization. Improvement of solubility is achieved by modifying the structures of alkyne monomers. All the polymers are thermally stable, losing little of their weights when heated to ~350 °C. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
In a sustainable circular economy, polymers capable of chemical recycling to monomers are highly desirable. We report an efficient monomer-polymer recycling of polydithioacetal (PDTA). Pristine PDTAs were readily synthesized from 3,4,5-trimethoxybenzaldehyde and alkyl dithiols. They then exhibited depolymerizability via ring-closing depolymerization into macrocycles, followed by entropy-driven ring-opening polymerization (ED-ROP) to reform the virgin polymers. High conversions were obtained for both the forward and reverse reactions. Once crosslinked, the network exhibited thermal reprocessability enabled by acid-catalyzed dithioacetal exchange. The network retained the recyclability into macrocyclic monomers in solvent which can repolymerize to regenerate the crosslinked network. These results demonstrated PDTA as a new molecular platform for the design of recyclable polymers and the advantages of ED-ROP for which polymerization is favored at higher temperatures.  相似文献   

15.
A new methodology has been developed for preparing α-functional polymers in a one-pot simultaneous polymerization/isocyanate "click" reaction. Our original synthetic strategy is based on the preparation of a carbonyl-azide chain transfer agent (CTA) precursor that undergoes the Curtius rearrangement in situ during reversible addition-fragmentation chain transfer (RAFT) polymerization yielding well-controlled α-isocyanate modified polymers. This strategy overcomes numerous difficulties associated with the synthesis of a polymerization mediator bearing an isocyanate at the R group and with the handling of such a reactive functionality. This new carbonyl-azide CTA can control the polymerization of a wide range of monomers, including (meth)acrylates, acrylamides, and styrenes (M(n) = 2-30 kDa; ? = 1.16-1.38). We also show that this carbonyl-azide CTA can be used as a universal platform for the synthesis of α-end-functionalized polymers in a one-pot RAFT polymerization/isocyanate "click" procedure.  相似文献   

16.
The development of more sustainable and eco-friendly polymers has attracted much attention from researchers over the past decades. Among the different strategies that can be implemented towards this goal, the substitution of the toxic reagents/monomers often used in polyurethane chemistry has stimulated much innovation leading to the development of the hydroxylated version of PURs, namely, the poly(hydroxyurethane)s (PHURs). However, some PHURs remain far from being sustainable as their synthesis may involve monomers and/or solvents displaying poor environmental impacts. Herein, we report on the use of more sustainable conditions to synthesize the biobased polycarbonates involved in the aminolysis reaction. In addition, we demonstrate that the use of renewable deep eutectic solvents (DESs) can act both as excellent solvents and organocatalysts to promote the aminolysis reaction.  相似文献   

17.
The synthesis of a series of monomers containing isopropenylphenoxy groups was carried out. On irradiation with UV light in the presence of onium salt photoacid generators, these monomers undergo a chain extension reaction consisting of a dimerization followed by a Friedel-Crafts ring closure which results in the formation of polymers with indane groups in the backbone. Aryl imide-containing monomers bearing isopropenylphenoxy groups were also shown to undergo facile photoinduced cationic polymerization. The resulting polymers displayed excellent thermal stability. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
The first synthesis of click neoglycopeptide analogues of the biologically relevant MUC1 sequence is reported. In the process, microwave-enhanced chaotrope-assisted click reaction conditions that may be used on a routine basis for the synthesis of click peptide conjugates have been developed. The convergent route for the synthesis of neoglycopeptides using these reaction conditions enables the facile, rapid, and highly efficient preparation of focused neoglycopeptide libraries of defined chemical structure for biological evaluation.  相似文献   

19.
Click chemistry focuses on the development of highly selective reactions using simple precursors for the exquisite synthesis of molecules. Undisputedly, the CuI-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most valuable examples of click chemistry, but it suffers from some limitations as it requires additional reducing agents and ligands as well as cytotoxic copper. Here, we demonstrate a novel strategy for the azide–alkyne cycloaddition reaction that involves a photoredox electron-transfer radical mechanism instead of the traditional metal-catalyzed coordination process. This newly developed photocatalyzed azide–alkyne cycloaddition reaction can be performed under mild conditions at room temperature in the presence of air and visible light and shows good functional group tolerance, excellent atom economy, high yields of up to 99 %, and absolute regioselectivity, affording a variety of 1,4-disubstituted 1,2,3-triazole derivatives, including bioactive molecules and pharmaceuticals. The use of a recyclable photocatalyst, solar energy, and water as solvent makes this photocatalytic system sustainable and environmentally friendly. Moreover, the azide–alkyne cycloaddition reaction could be photocatalyzed in the presence of a metal-free catalyst with excellent regioselectivity, which represents an important development for click chemistry and should find versatile applications in organic synthesis, chemical biology, and materials science.  相似文献   

20.
A facile, ketene-based strategy for the synthesis of polyesters from stable Meldrum's acid monomers has been developed which overcomes many issues associated with traditional step-growth procedures. A significant increase in polymerization efficiency is observed with only 10 min reaction time at 220 °C being needed to obtain high molecular weight polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号