首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strong metal–support interaction (SMSI) has gained great attention in the field of heterogeneous catalysis. However, whether single-atom catalysts can exhibit SMSI remains unknown. Here, we demonstrate that SMSI can occur on TiO2-supported Pt single atoms but at a much higher reduction temperature than that for Pt nanoparticles (NPs). Pt single atoms involved in SMSI are not covered by the TiO2 support nor do they sink into its subsurface. The suppression of CO adsorption on Pt single atoms stems from coordination saturation (18-electron rule) rather than the physical coverage of Pt atoms by the support. Based on the new finding it is revealed that single atoms are the true active sites in the hydrogenation of 3-nitrostyrene, while Pt NPs barely contribute to the activity since the NP sites are selectively encapsulated. The findings in this work provide a new approach to study the active sites by tuning SMSI.  相似文献   

2.
Photocatalysts with well-designed compositions and structures are desirable for achieving highly efficient solar-to-chemical energy conversion. Heterostructured semiconductor photocatalysts with advanced hollow structures possess beneficial features for promoting the activity towards photocatalytic reactions. Here we develop a facile synthetic strategy for the fabrication of Fe2TiO5–TiO2 nanocages (NCs) as anode materials in photoelectrochemical (PEC) water splitting cells. A hydrothermal reaction is performed to transform MIL-125(Ti) nanodisks (NDs) to Ti–Fe–O NCs, which are further converted to Fe2TiO5–TiO2 NCs through a post annealing process. Owing to the compositional and structural advantages, the heterostructured Fe2TiO5–TiO2 NCs show enhanced performance for PEC water oxidation compared with TiO2 NDs, Fe2TiO5 nanoparticles (NPs) and Fe2TiO5–TiO2 NPs.  相似文献   

3.
Rational design of Pt single-atom catalysts provides a promising strategy to significantly improve the electrocatalytic activity for hydrogen evolution reaction. In this work, we presented a novel and efficient strategy for utilizing the low electron-density region of substrate to effectively trap and confine high electron-density metal atoms. The Pt single-atom catalyst supported by nickel selenide with rich vacancies was prepared via a hydrothermal-impregnation stepwise approach. Through experimental testation and DFT theoretical calculation, we confirm that Pt single atoms are well distributed at cationic vacancies of nickel selenide with loading amount of 3.2 wt. %. Moreover, the atomic Pt combined with the high electronegative Se to form Pt−Se bond as a “bridge” between single atoms and substrate for fast electron translation. This novel catalyst shows an extremely low overpotential of 45 mV at 10 mA cm−2 and an excellent stability over 120 h. Furthermore, the nickel selenide supported Pt SACs exhibits long-term stability for practical application, which maintains a high current density of 390 mA cm−2 over 80 h with a retention of 99 %. This work points a promising direction for designing single atoms catalysts with high catalytic activity and stability for advanced green energy conversion technologies.  相似文献   

4.
Rapid urbanization has inevitably raised challenges by indirectly adding industry waste to the environment. This problem becomes even more severe when contamination of consumable water is considered. As a leading sector in semiconductor-related research to face such challenges, gallium oxide and its derivatives have shown remarkable performance by exhibiting controlled, recyclable photocatalytic activities. This work demonstrates the enhancement of the photocatalytic performance of β-Ga2O3, which is related to the structural and morphological variation induced by rGO wrapping. Firstly, the Ga2O3 nanostructures are obtained by calcinating gallium oxide hydroxide (GaOOH), which is synthesized via a simple chemical route. On the other hand, rGO wrapped β-Ga2O3 is synthesized using in-situ hydrothermal treatment. In addition to traditional characterizations such as X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, etc., the photocatalytic performance of both pristine and composite systems is studied by time-dependent UV–Vis absorption spectrum for the degradation of different organic toxic pollutants. It is observed that the composite sample exhibited a larger effective surface area and enhanced optical absorption in the UV–Vis range as compared to the pristine gallium oxide sample. Under UV light irradiation, the rGO wrapped β-Ga2O3 nanobars can degrade rhodamine B dye entirely within 25 min and exhibit a higher photodegradation rate of 0.1598 min−1 which became 3.5 times higher as compared to that of pure gallium oxide.  相似文献   

5.
Hierarchical FeCoS2–CoS2 double-shelled nanotubes have been rationally designed and constructed for efficient photocatalytic CO2 reduction under visible light. The synthetic strategy, engaging the two-step cation-exchange reactions, precisely integrates two metal sulfides into a double-shelled tubular heterostructure with both of the shells assembled from ultrathin two-dimensional (2D) nanosheets. Benefiting from the distinctive structure and composition, the FeCoS2–CoS2 hybrid can reduce bulk-to-surface diffusion length of photoexcited charge carriers to facilitate their separation. Furthermore, this hybrid structure can expose abundant active sites for enhancing CO2 adsorption and surface-dependent redox reactions, and harvest incident solar irradiation more efficiently by light scattering in the complex interior. As a result, these hierarchical FeCoS2–CoS2 double-shelled nanotubes exhibit superior activity and high stability for photosensitized deoxygenative CO2 reduction, affording a high CO-generating rate of 28.1 μmol h−1 (per 0.5 mg of catalyst).  相似文献   

6.
Sodium molybdate (Na−Mo−O) wrapped by graphene oxide (GO) composites have been prepared via a simple in-situ precipitation method at room temperature. The composites are mainly constructed with one dimension (1D) ultra-long sodium molybdate nanorods, which are wrapped by the flexible GO. The introduction of GO is expected to not merely provide more active sites for lithium-ions storage, but also improve the charge transfer rate of the electrode. The testing electrochemical performances corroborated the standpoint: The Na−Mo−O/GO composites delivers specific capacities of 718 mAh g−1 after 100 cycles at 100 mA g−1, and 570 mAh g−1 after 500 cycles at a high rate of 500 mA g−1; for comparison, the bare Na−Mo−O nanorod shows a severe capacity decay, which deliver only 332 mAh g−1 after 100 cycles at 100 mA g−1. In view of the cost-efficient and less time-consuming in synthesis, and one-step preparation without further treatment, these Na−Mo−O nanorods/GO composites present potential and prospective anodes for LIBs.  相似文献   

7.
TiO2−CeO2−Pt hollow nanospheres (1 wt-% Pt) are realized using a liquid-phase strategy using NaCl as a template. The NaCl template is first coated with TiO2 and thereafter with CeO2 via the hydrolyzation of TiCl(OiPr)3 and Ce(OiPr)4 as suitable alkoxides. Finally, the NaCl template is removed by washing with water. The resulting @TiO2−CeO2 hollow nanospheres (□: inner cavity) exhibit an outer diameter of 140–180 nm, a wall thickness of 30–40 nm, an inner cavity of 80–100 nm, a specific surface area of 210 m2/g, a pore volume and area of 0.08 cm3/g and 191 m2/g, mainly with micropores ≥5 Å and ≤14 Å. The hollow nanosphere support is impregnated with Pt nanoparticles, using two different methods – a wet-chemical deposition (Pt(ac)2, acetone, 25 °C) and a supercritical fluid reactive deposition (SFRD) process ([Pt(COD)Me2], supercritical CO2, 80 °C, 15.6 MPa) resulting in an uniform size distribution with Pt nanoparticles 2.5±0.1 nm (TiO2−CeO2−PtWCD) and 2.3±0.1 nm (TiO2−CeO2−PtSFRD) in size. The catalytic properties of the TiO2−CeO2−Pt hollow nanospheres are evaluated for CO oxidation between 50 and 500 °C. A promising catalytic activity and stable light-out/light-off temperatures are observed especially for the TiO2−CeO2−PtSFRD sample, indicating the suitability of hollow nanospheres as high-porosity catalyst material.  相似文献   

8.
It is reported for the first time that the Pt/TiO2 electrocatalyst was successfully used for the electrocatalytic oxidation of CO in the electrochemical gas sensor with a controlled potential mode. The stability of electrocatalytic activity of the Pt-TiO2 electrocatalyst for the CO oxidation is better than that of Pt.  相似文献   

9.
Polymeric carbon nitride (CN) is a promising material for photocatalytic water splitting. However, CN in its pristine form tends to show moderate activity due to fast recombination of the charge carriers. The design of efficient photocatalytic system is therefore highly desired, but it still remains a great challenge in chemistry. In this work, a pyrene-based polymer able to serve as an electron donor to accelerate the interface charge carrier transfer of CN is presented. The construction of donor-acceptor (D–A) heterojunction was confirmed to significantly restrain the charge recombination and, thus, improve the proton reduction process. This study provides a promising strategy to achieve solar H2 production in an efficient and low-cost manner.  相似文献   

10.
Metallic conductive 1T phase molybdenum sulfide (MoS2) has been identified as promising anode for sodium ion (Na+) batteries, but its metastable feature makes it difficult to obtain and its restacking during the charge/discharge processing result in part capacity reversibility. Herein, a synergetic effect of atomic-interface engineering is employed for constructing 2H-MoS2 layers assembled on single atomically dispersed Fe−N−C (SA Fe−N−C) anode material that boosts its reversible capacity. The work-function-driven-electron transfer occurs from SA Fe−N−C to 2H-MoS2 via the Fe−S bonds, which enhances the adsorption of Na+ by 2H-MoS2, and lays the foundation for the sodiation process. A phase transfer from 2H to 1T/2H MoS2 with the ferromagnetic spin-polarization of SA Fe−N−C occurs during the sodiation/desodiation process, which significantly enhances the Na+ storage kinetics, and thus the 1T/2H MoS2/SA Fe−N−C display a high electronic conductivity and a fast Na+ diffusion rate.  相似文献   

11.
In situ FTIR spectroscopy was utilized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment of magnetic field may not change the mechanism of photocatalytic degradation of benzene, however, it greatly facilitate the conversion of benzene to phenol and quinone, as well as the transformation from phenol to quinone, resulting in opening the benzene ring easily and promoting the production of CO2.  相似文献   

12.
The adsorption and photocatalutic decomposition of citric acid on both Pt/TiO2 powder and n-TiO2 single crystal electrode were studied in aqueous solutions of various pH. It was found that citrate ions were chemisorbed on TiO2, which could increase the interfacial capacity and the filling factor of photocurrent-potential curves. The quantity of adsorption, slope of mott-Shottky plot and the rate of photocatalytic decomposition of citric acid were found to depend strongly on pH of solution. The phot ocatalytic decomposition of citric acid was discussed in light of its adsorption on TiO2.  相似文献   

13.
"Mesoporous TiO2 powder and films with worm-like channels were synthesized by an evaporation-induced self-assembly approach. The as-prepared samples were calcined at different temperature to investigate the effect of calcined temperature on the mesostructure and the photocatalytic activity. Acetaldehyde photodegradation in gas phase was employed to evaluate the photocatalytic activity of mesoporous TiO2. Results showed that all the calcined powder samples exhibited higher photocatalytic activities than that of Degussa P25. The sample calcined at 400 oC, which showed higher activity than other samples, possessed a homogeneous pore diameter of about 6.0 nm and an 11.0 nm crystalline anatase pore wall, as well as large surface area of 117 m2/g. It was speculated that two factors of surface area and crystallinity affected the photocatalytic activity of mesoporous TiO2 photocatalyst. The mesoporous TiO2 films fabricated by spin-coating also had high photocatalytic activities."  相似文献   

14.
Preparation and Photocatalytic Characterization of Nanoporous TiO2   总被引:2,自引:0,他引:2  
Nanoporous TiO2 photocatalysts were prepared by use of controlled drying method with surfactants. The surface area and porous properties are dependent on the chain length of incorporated surfactant cation. The TiO2 materials prepared in the presence of surfactant molecules during the gel formation exhibit much higher photocatalytic activity than that prepared in the absence of surfactants.  相似文献   

15.
The catalytic properties of several supported metal catalysts on different carriers were studied in the partial oxidation of methane (POM) to syngas. In our experiment, supported noble metal catalysts exhibited better performance than the other supported transition metal catalysts. The catalyst performances were significantly influenced by the d-electron configuration of the active metal components and the dispersion of active metal components on the support. A catalyst with a moderate number of unpaired electrons in the d-orbital of the active metal support without obvious acidity or redox activity (e.g. MgO) was suitable for POM performance. The Rh/SiO2 catalyst was the best in the POM reaction, among those investigated. Reaction conditions apparently also affected the POM performance of the catalyst. The conversion of methane and the selectivity for CO increased with the reaction temperature, and a high CH4/O2 ratio was not beneficial for POM performance.  相似文献   

16.
In this paper, TiO2 loaded on activated carbon fibers (ACF) was prepared by a coating treatment, followed by calcination at different temperatures in air atmosphere. The photocatalyst developed was characterized by SEM, XRD, XPS and UV-Vis adsorption spectroscopy. It was observed from SEM images that TiO2 loaded on ACF was in the form of small clusters with nanometer size. As confirmed by XRD and XPS determinations, the crystalline pattern of immobilized TiO2 was still anatase-form after calcination, and the micrographic structure and surface properties of ACF have not been damaged by the deposition process and calcination at different temperatures. Photocatalytic degradation of methylene blue (MB) in aqueous .solution was investigated using TiOE/ACF as photocatalyst. The comparison of photolysis, absorption and photocatalysis was carded out. The results indicated that the photocatalysis process of combined photocatalyst showed much higher degradation rate than that of photolysis and absorption processes. In addition, the possibility of cyclic usage of the photocatalyst was also confirmed.  相似文献   

17.
Ag-TiO2/TTO film electrode was used as photoanode to investigate the feasibility of a hybrid technology of Ag nanoparticles combined with the application of anodic bias.The results showed that the deposited Ag and applied anodic bias have an apparent additive effect.  相似文献   

18.
19.
TiO2 has been tested to be toxic to DNA under the photo-irradiation of ultraviolet A (UVA). However, in the dark conditions, after several days of treatment with TiO2 in aqueous solution, the interaction between TiO2 and two types of DNA was detected and the mechanisms were studied by the methods of gel-electrophoresis, IR spectroscopy and TEM. The results showed that the DNA would be bound to TiO2; the ratio of binding was related to the concentration and the treating time; the mechanism of binding is related to phosphate groups of DNA. Besides, DNA with different structure showed different degree of binding. These findings showed a new possible way through which the TiO2 nanoparticles interact with DNA.  相似文献   

20.
Extracts from roots of Beta vulgaris were used as natural sensitizers of a wide-bandgap semiconductor (CeO2–TiO2) in photoelectrochemical solar cells. The natural dye, adsorbed onto the semiconductor surface, absorbs visible light and promotes electron transfer across the dye/semiconductor interface. We have applied CeO2–TiO2 to natural dye sensitizer solar cells as a photoelectrode to reduce the charge recombination rate by providing energy barrier at the interface between the photoanode and electrolyte which offers an improvement of photovoltaic efficiency. Short-circuit current density (J sc) and open-circuit voltages (V oc) of 9.0 mA cm?2 and 680 mV, respectively, were obtained, and an effective energy conversion efficiency of 3.5?% was achieved. This simple and cheap technique of cell preparation opens up a perspective of commercial feasibility for inexpensive and environment-friendly dye cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号