首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the novel ternary hybrid materials consisting of semiconductor (TiO2), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO2-POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF3SO3 precursor and a NaBH4 aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO2 nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the CO groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.  相似文献   

2.
Titanium dioxide (TiO2)-based materials have been well studied because of the high safety and excellent cycling performance when employed as anode materials for lithium ion batteries (LIBs), whereas, the relatively low theoretical capacity (only 335 mAh g?1) and serious kinetic problems such as poor electrical conductivity (~?10?13S cm?1) and low lithium diffusion coefficient (~?10?9 to 10?13 cm2 s?1) hinder the development of the TiO2-based anode materials. To overcome these drawbacks, we present a facile strategy to synthesize N/S dual-doping carbon framework anchored with TiO2 nanoparticles (NSC@TiO2) as LIBs anode. Typically, TiO2 nanoparticles are anchored into the porous graphene-based sheets with N, S dual doping feature, which is produced by carbonization and KOH activation process. The as-obtained NSC@TiO2 electrode exhibits a high specific capacity of 250 mAh g?1 with a coulombic efficiency of 99% after 500 cycles at 200 mA g?1 and excellent rate performance, indicating its promising as anode material for LIBs.  相似文献   

3.
The synthesis of highly divided anatase TiO2 nanoparticles displaying 300 m2 g?1 surface area is achieved by following a two‐step synthetic process at room temperature. The particles exhibit a needle‐like morphology composed of self‐assembled 4 nm nanoparticles. The crystallization process from amorphous TiO2.1.6H2O to oriented aggregation of anatase TiO2 proceeds according to a slow solid dehydration process taking place in a large range of pH in deionized water (1 < pH < 12) or alternatively when including a low amount of NH4F(aq) in solution. Driven by their high surface area enhancing the chemical/electrochemical reactivity, it is reported in the case of the anatase TiO2 that a modification in the lithium insertion mechanism is no longer attributable to a two‐phase reaction between the two‐end members LiεTiO2 and Li0.5±αTiO2 when downsizing the particle size, but instead through a complete solid solution all along the composition range.  相似文献   

4.
TiO2-coated sericite powders were prepared by the chemical deposition method starting from lamellar sericite and TiCl4 in the presence or absence of La3+ cations. After calcination at 900 °C for 1 h, the resultant TiO2 nanoparticles on the sericite surfaces existed in anatase phase. The light scattering indexes of the TiO2-coated lamellar sericite powders were dozens of times higher than that of the naked lamellar sericite powders. The presence of La3+ in the deposition solution was beneficial to the formation of the small-sized anatase TiO2 nanoparticles, resulting in the formation of the dense and uniform island-like TiO2 coating layers in a large range of the weight ratios of TiO2 to sericite from 5% to 20%. The TiO2-coated lamellar sericite powders prepared in the presence of La3+ had higher light scattering index than that prepared in the absence of La3+. XPS analysis shows that when La3+ cations were absent in the reaction solution, TiO2 coating layers anchored at the sericite surface via the Ti-O-Si and Ti-O-Al bonds. The presence of La3+ cations caused the formation of Si-O-La and Al-O-La bonds at the sericite surface and Ti-O-La bond at the surface of TiO2 coating layers. After coating TiO2 on the sericite surface, the yellowness of the TiO2-coated sericite powders obviously increased and the brightness slightly decreased.  相似文献   

5.
This article reports the thermal conductivity modeling of nanofluids containing decorated multi-walled carbon nanotubes with TiO2 nanoparticles. TiO2 nanoparticles and decorated multi-walled carbon nanotubes are synthesized with different amounts of TiO2 nanoparticles. The experimental results show that the measured thermal conductivities of TiO2 nanofluids and multi-walled carbon nanotube nanofluids are higher than the predicted values by theoretical models. The comparison results of multi-walled carbon nanotube nanofluids and multi-walled carbon nanotube–TiO2 nanofluids reveal that the predicted values by the Xue model are closer to the measured values. In addition, the results show that the thermal conductivity of nanofluids containing multi-walled carbon nanotube–TiO2 increases with respect to TiO2 content of hybrid.  相似文献   

6.
Effective design of a dye-sensitized solar cell (DSSC) requires a clear understanding of the reaction mechanisms of the constituent cell materials. The relationship between structural and photo-electrochemical properties of the photo-anodic materials is of the first priority for such investigations. Highly oriented aggregates of anatase phase TiO2 nanoparticles were deposited on Indium Tin oxide (ITO) glass substrates; over which N719 dyes were adsorbed through electrophoretic deposition under a strong magnetic field. The properties were evaluated by electrochemical measurements, UV–VIS spectroscopy, and electrical resistance measurements. The results showed that the absorbed photon number in the TiO2 aggregates with adsorbed dye and their resistivity showed different dependences on the orientation of the crystal plane in the TiO2 particle. The dependence of the photocurrent on the plane orientation of aggregates of dye-sensitized TiO2 nanoparticles has been determined from a combination of the electrical conductivity of TiO2 aggregate and the amount of dye adsorbed on the surface of TiO2.  相似文献   

7.
In this research, we have studied the doping behaviors of eight transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, adsorption spectra, anatase fraction, and photoreactivity of TiO2 nanoparticles. The pristine and ion-doped TiO2 nanoparticles of 15.91-25.47 nm were prepared using sol–gel method. Test metal ion concentrations ranged from 0.00002 to 0.2 at.%. The absorption spectra of the TiO2 nanoparticles were characterized using UV-Visible spectrometer. The wavelength of the absorption edge of TiO2 was estimated using the spectra derivative-tangent method. The photoreactivities of pristine and ion-doped TiO2 nanoparticles under UV irradiation were quantified by the decoloring rate of methyl orange. XRD patterns were recorded using a Rigaku D/MAX-2500 V diffractometer with Cu Kα radiation (50 kV and 250 mA), and particle size and anatase fraction were calculated. Results reveal that different ion doping exhibited complex effects on the studied characteristics of TiO2 nanoparticles. In general, red shift occurred to ion-doped TiO2 nanoparticles, but still with higher TiO2 photoreactivities when doped with Fe3+ and Ni2+ ions. Among the ions investigated, Ni-doped TiO2 nanoparticles have shown highest photoreactivity at the concentration of 0.002 at.%, about 1.9 times that of the pristine TiO2. Ion doping was shown to reduce the diameter and influence the fraction of anatase. Data also indicated that the combination of anatase diameter and ion radius might play an important role in the photoreactivity of TiO2 nanoparticles. This investigation contributes to the understanding of complex ion doping effects on TiO2 nanoparticles, and provides references for enhancing their environmental application.  相似文献   

8.
《Ultrasonics sonochemistry》2014,21(6):1964-1968
Through an ultrasound assisted method, TiO2/WO3 nanoparticles were synthesized at room temperature. The XRD pattern of as-prepared TiO2/WO3 nanoparticles matches well with that of pure monoclinic WO3 and rutile TiO2 nanoparticles. TEM images show that the prepared TiO2/WO3 nanoparticles consist of mixed square and hexagonal shape particles about 8–12 nm in diameter. The photocatalytic activity of TiO2/WO3 nanoparticles was tested for the degradation of a wastewater containing methylene blue (MB) under visible light illumination. The TiO2/WO3 nanoparticles exhibits a higher degradation rate constant (6.72 × 10−4 s−1) than bare TiO2 nanoparticles (1.72 × 10−4 s−1) under similar experimental conditions.  相似文献   

9.
Hyper-Rayleigh Scattering (HRS) technique was used to study the second-order nonlinear optical (NLO) responses of aqueous titanium dioxide (TiO2) nanoparticles of 10nm in size, and two nanoparticles-dye composites prepared by adding rhodamine B (Rh610) or the organic tosylate salt of dimethylaminostilbazolium (DAST). Results showed that the "per particle" first hyperpolarizability β for TiO2 nanoparticles is very large, in the range of 1026 esu. With adding Rh610 and DAST, the HRS signals of the composites were further enhanced. And in TiO2/Rh610 composite the enhancement was obviously greater than that of TiO2/DAST composite. It has proved that non-centrosymmetry of the nanocrystal/solution interface contributes mainly to its large "per particle" β, overwhelming the nanocrystal core. So the interactions between nanoparticles surfaces and adsorbed dyes were very important for their second-order NLO responses. HRS technique provides a useful new NLO method to characterize the surface structures and microenvironment of nanoscale materials.  相似文献   

10.
Monte Carlo simulations were carried out on amorphous titanium dioxide (TiO2) for both bulk and hydroxylated nanoparticles with particle sizes ranging from 1 to 10 nm. The potential developed by the Matsui and Akaogi (MA) was used to model the interatomic interactions of TiO2 in both cases (bulk and nanoparticles). Besides, Angular and Morse potentials proposed by the Tether, Cormack, Du et. al. (TCD) were introduced to model the interactions of hydroxyl groups on the TiO2 surfaces, i.e., the Ti-O-H groups with an experimental and theoretical angles of 125 o . The bulk system was developed using periodic boundary conditions. The TiO2 nanoparticles were extracted by applying a spherical cut section in the bulk TiO2 melt structure to obtain the required size. Free valences on the nanoparticle surfaces were saturated via additional hydroxyl groups and then quenched to 300 K under free boundary conditions. The bulk and surface properties of the nanoparticles were calculated at 300 K and zero pressure and characterized via radial distribution functions, bond angle distributions, bond distances, coordination numbers, OH group concentrations and radial density profiles. In addition, to understand the difference in properties of amorphous hydroxylated TiO2 nanoparticles and bulk amorphous TiO2, a comparative study was done at the same thermodynamic conditions. The study shows that the bulk properties of amorphous hydroxylated TiO2 nanoparticles are strongly size-dependent and different from those of the bulk TiO2. As expected, increasing the particle size leads to an approach of the particle’s bulk properties to the bulk properties of the (quasi) infinite system. The size effects show that decreasing the particle size results in increasing the surface effects and surface OH group concentrations. Accordingly, small-sized TiO2 nanoparticles have higher surface OH group concentrations and larger surface effects than large-sized TiO2 nanoparticles. Larger surface effects result significant changes in their bond angles, bond distances, and coordination numbers. The simulation results of the surface properties reveal that the surface titanium atoms in the TiO2 nanoparticles have the capability of accommodating up to 5 hydroxyl groups. The mean surface hydroxyl group density of the amorphous TiO2 spherical nanoparticles is estimated to be around 8.1/nm 2, which lies in the range of 8–16/nm 2, found by experimental and other simulation studies. Details of the modelling, simulations results and the study are presented in this paper.  相似文献   

11.
Compared to conventional film photocatalysts, fiber photocatalyst has a greater surface-to-volume ratio and a 3-D open structure that allows its surface active sites to be accessible for reactants more easily and effectively. However, TiO 2 powder (Degussa P25), by itself, cannot be prepared in the form of fibers, but with the help of a polymer nanofiber, TiO 2 particles can be immobilized in a fibrous network of polyelectrolyte. Here, hybrid multilayered hollow nanofibers (HMHNFs) composed of TiO 2 /polyelectrolyte (PE) have been prepared by a combination of a electrospinning method and layer-by-layer (LBL) technology. The results show that both the average diameter and the wall thickness of the HMHNFs can be well controlled by the template, as well as the number of coating layers. The dried morphology of the obtained HMHNFs is dependent on the inner deposited numbers of the polyelectrolyte layers. When compared with other nanostructured TiO 2 materials, such as commercial TiO 2 nanoparticles (P25, Degussa) and TiO 2 films, the hollow TiO 2 /PE hybrid nanofibers exhibited higher photocatalytic activities.  相似文献   

12.
CdTe–TiO2–graphene nanocomposites were successfully synthesized via a simple and relatively general hydrothermal method. During the hydrothermal environment, GO was reduced to reduced graphene oxide (RGO), accompanying with the anchoring of TiO2 nanoparticles on the surface of RGO. In the following process, CdTe quantum dots (QDs) were then in situ grown on the carbon basal planes. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and fluorescent spectroscopy. It is hoped that our current work could pave a way towards the fabrication of QDs–TiO2–RGO hybrid materials.  相似文献   

13.
Two kinds of hydrophilic polymers, poly(oxyethylene methacrylate) (POEM) and poly(styrene sulfonic acid) (PSSA), were grafted from TiO2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. Chlorine modified TiO2 nanoparticles (TiO2-Cl), the ATRP initiators, were synthesized by the reaction of -OH in TiO2 with 2-chloropropionyl chloride (CPC). FT-IR, UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS) clearly showed that the polymer chains were successfully grafted from the surface of TiO2 nanoparticles. The hydrophilically modified TiO2 nanoparticles have a better dispersion in alcohol than unmodified nanoparticles, as revealed by transmission electron microscopy (TEM). It was also found that the polymer grafting did not significantly alter the crystalline structure of the TiO2 nanoparticles according to the X-ray diffraction (XRD) patterns. Grafting amounts were 10% of the weight for both TiO2-POEM and TiO2-PSSA nanoparticles, as determined by thermogravimetric analysis (TGA).  相似文献   

14.
Studies were performed on surface modification of antibacterial TiO2/Ag+ nanoparticles by grafting γ-aminopropyltriethoxysilane (APS). The interfacial structure of the modified particles was characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The thickness of the surface layer was determined by using Auger electron spectroscopy (AES). The results show that APS is chemically bonded to the surface of antibacterial TiO2/Ag+ nanoparticles. Furthermore, the modified particles were mixed in PVC to prepare composites whose antibacterial property was investigated. The results suggest that surface modification has no negative effect on antibacterial activity of TiO2/Ag+ nanoparticles and PVC-TiO2/Ag+ composites exhibits good antibacterial property.  相似文献   

15.
Anatase nanocrystalline TiO2 thin films were obtained by a sol–gel dip‐coating method, in which the nanocrystallization is effected by a simple hot water treatment of the deposited films at temperatures below 90 °C under atmospheric pressure for 1 h. The dip‐coating sol was prepared by reacting titanium tetra‐n‐butoxide [Ti(OnBu)4] with polyethylene glycol (PEG) in ethanol. Films obtained from a sol that do not contain PEG show no sign of crystallization, demonstrating the importance of PEG in the crystallization process. Raman studies of reaction dynamics show that PEG undergoes a nucleophilic substitution reaction replacing butoxy groups in Ti(OnBu)4. Stoichiometric reactions of Ti(OnBu)4 with PEG in polar and nonpolar solvents were performed, and they yielded different titanium–PEG hybrid polymers, which were isolated and characterized by various spectroscopic techniques such as IR, Raman, solid‐state NMR and MALDI‐TOF‐MS. NMR studies evidenced the location and the way in which PEG is bonded with titanium atoms in the titanium–PEG hybrid polymers. On the basis of these studies, we have proposed structures for these polymers. It is demonstrated that the structure of the obtained polymers plays an important role in the formation of anatase TiO2 nanoparticles in hot water at temperatures below 90 °C under atmospheric pressure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Poly(lactic acid) (PLA)-grafted TiO2 particles were prepared by in situ melt polycondensation of lactic acid onto the surface of TiO2 nanoparticles. The resulting products were characterized by FTIR, XPS, TG-FTIR, XRD analysis and electron microscopy observation so as to have a better understanding of bonding between the graft polymer and nanoparticles. New characteristic peaks of Ti-carboxylic coordination bond, the changes in the relative intensities of the infrared absorption bands of graft polymer and the two decomposition stage of PLA-grafted TiO2 confirmed that PLA was grafted on the surface of TiO2 nanoparticles. By attachment of PLA, the PLA-grafted TiO2 samples exhibited much better dispersion and a slightly larger particle size than bare TiO2 particles. PLA-grafted TiO2 nanoparticles will find wide applications in biomedical and eco-friendly materials, especially as fillers in PLA matrix.  相似文献   

17.
In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe3+-dopants in TiO2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO2) and N-doped TiO2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.  相似文献   

18.
ABSTRACT

Rb+-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by sol–gel method. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), and surface area (BET) measurements. The photocatalytic activity for the degradation of rhodamine B (RhB) was evaluated. The effects of calcination temperature, Rb+-doping amount, and the dosage of catalyst in the reaction liquid were investigated. The results showed that Rb+ doping can inhibit phase transformation from anatase to rutile, increase surface area of TiO2 crystals, and reduce crystallite size. TiO2 doped with 1% Rb+ and calcined at 650°C shows much higher photoactivity than the others when the doping level of Rb+ and calcination temperature are 0–5% and 350–850°C, respectively. The kinetics of the degradation of RhB was also analyzed. The kinetics of this reaction fits the pseudo first-order kinetics model well, and the reaction rate constants for pure TiO2 and Rb1-650 are 0.086 min?1 and 0.226 min?1 respectively. Doping with Rb+ improves the photocatalytic activity of TiO2 significantly.  相似文献   

19.
While chemical and biological attacks pose risk to human health, clean air is of scientific, environmental and physiological concerns. In the present contribution, the potential use of nanosilver-decorated titanium dioxide (TiO2) nanofibers for toxin decomposition with antimicrobial activity and self-cleaning properties was investigated. Titanium dioxide nanofibers were prepared through sol-gel reaction followed by an electrospinning process. Following the Japan Industrial Standard (JIS) protocol, decompositions of nitrogen oxide (NOx) and volatile organic compound (VOC) by the TiO2 nanofibers suggested that these materials were capable of air treatment. To further enhance their anti-microbial activity, silver nanoparticles were decorated onto the TiO2 nanofibers’ surfaces via photoreduction of silver ion in the presence of the nanofibers suspension. Furthermore, tests of photocatalytic activity of the samples were performed by photodegrading methylene blue in water. The nanofibrous membranes prepared from these nanofibers showed superhydrophilicity under UV. Finally, the possibility of using these hybrid nanofibers in environmental and hygienic nanofiltration was proposed, where the self-cleaning characteristics was expected to be valuable in maintenance processes.  相似文献   

20.
Plasma-enhanced chemical vapor deposition was used to conformally coat commercial TiO2 nanoparticles to create nanocomposite materials. Hexamethyldisiloxane (HMDSO)/O2 plasmas were used to deposit SiO2 or SiOxCyHz films, depending on the oxidant concentration; and hexylamine (HexAm) plasmas were used to deposit amorphous amine-containing polymeric films on the TiO2 nanoparticles. The composite materials were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). These analyses reveal film composition on the nanoparticles was virtually identical to that deposited on flat substrates and that the films deposit a conformal coating on the nanoparticles. The performance of the nanocomposite materials was evaluated using UV-vis spectroscopy to determine the dispersion characteristics of both SiOx and HexAm coated TiO2 materials. Notably, the coated materials stay suspended longer in distilled water than the uncoated materials for all deposited films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号