首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
Silylium ions (“R3Si+”) are found to catalyze both 1,4‐hydrosilylation of methyl methacrylate (MMA) with R3SiH to generate the silyl ketene acetal initiator in situ and subsequent living polymerization of MMA. The living characteristics of the MMA polymerization initiated by R3SiH (Et3SiH or Me2PhSiH) and catalyzed by [Et3Si(L)]+[B(C6F5)4] (L = toluene), which have been revealed by four sets of experiments, enabled the synthesis of the polymers with well‐controlled Mn values (identical or nearly identical to the calculated ones), narrow molecular weight distributions (? = 1.05–1.09), and well defined chain structures {H? [MMA]n? H}. The polymerization is highly efficient too, with quantitative or near quantitative initiation efficiencies (I* = 96–100%). Monitoring of the reaction of MMA + Me2PhSiH + [Et3Si(L)]+[B(C6F5)4] (0.5 mol%) by 1H NMR provided clear evidence for in situ generation of the corresponding SKA, Me2C?C(OMe)OSiMe2Ph, via the proposed “Et3Si+”‐catalyzed 1,4‐hydrosilylation of monomer through “frustrated Lewis pair” type activation of the hydrosilane in the form of the isolable silylium‐silane complex, [Et3Si? H? SiR3]+[B(C6F5)4]. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1895–1903  相似文献   

2.
In this work, the catalytic activity of electronically unsaturated three coordinated aluminum hydride cations [ L AlH]+[HB(C6F5)3] ( 1 ) and [ L AlH]+[B(C6F5)4] ( 2 ) in hydrosilylation of imines has been disclosed ( L ={(2,6-iPr2C6H3N)P(Ph2)}2N). A variety of organo-silanes such as Et3SiH, MePhSiH2, PhSiH3, TMDSO, and PHMS are screened in this endeavour. The amines as products of catalysis were obtained in good to excellent yields after the hydrolysis of silylamine intermediates. Further, a series of controlled experiments systematically designed to investigate the underlying mechanistic pathway through multinuclear NMR analysis showed Lewis adduct formation between cationic aluminum centre and the imine nitrogen, which subsequently undergoes reaction with silane to afford the product. The hydrosilylation of imine performed with Et3SiH using catalyst 1 with a loading of 2 mol % at 60 °C occurs smoothly. Whereas 2 led to the product formation with Et3SiH only when used in stoichiometric quantity. Further, to investigate this unique behaviour of 1 NMR investigations were performed and revealed that the anion in 1 competes for hydride delivery and in-situ generates B(C6F5)3 that cooperatively reinforces the catalytic activity of 1 .  相似文献   

3.
The mechanoactivated solid-state reaction of [Et4N]2[Mo3S7Br6] with Na(Et2NCS2) in a vacuum vibration ball mill yields the [Mo3S7(Et2NCS2)3]+[Et2NCS2]complex. The product was studied by IR and Raman spectroscopy and differential thermal analysis.  相似文献   

4.
A general and mild hydrosilylation of thioalkynes is described. With the cationic catalyst [Cp*Ru(MeCN)3]+ and the bulky silane (TMSO)3SiH, a range of thioalkynes underwent smooth hydrosilylation at room temperature with excellent α regioselectivity and syn stereoselectivity. DFT calculations provided important insight into the mechanism, particularly the unusual syn selectivity with the [Cp*Ru(MeCN)3]+ catalyst. The sulfenyl group in the substrates was found to provide important chelation stabilization to direct the reaction through a new mechanistic pathway.  相似文献   

5.
Thermolysis of cyano complexes. VII. On the thermal decomposition of hexacyanocobaltate(III); ligand exchange during thermolysis The thermal decomposition of hexacyanocobaltates(III) yields, as products of successive intramolecular redox reactions, first dicyan and CoII(CoIII)-complexes, then CoII[CoII]-complexes and simple CoII(CN)2, respectively, and finally CoICN and elemental Co, respectively. All the compounds of the [CoIII(NH3)6]3+ cation with the cyanometallate anions of Co, Fe, Cr, Mn, Ni, Mo yield the same DTA curve as [Co(NH3)6][Co(CN)6] does; in the case of Ni and Cr, which are capable of forming ammine complexes, simultaneous mutual ligand exchange occurs.  相似文献   

6.
Regioselective generation of the C(2)-carbocation a of tricyclo[4.2.2.01,5]decane ( 1 ) by treatment of both corresponding epimeric alcohols 5 and 6 with BF3 and trapping the rearranged tricyclo[5.3.0.04,8]decan-7-yl carbocation b with Et3SiH as hydride-ion donor (ionic hydrogenation) gives the corresponding hydrocarbon 3 as sole product in almost quantitative yield. The latter is a known intermediate in the Lewis-acid-catalyzed rearrangement of 1 to adamantane ( 4 ).  相似文献   

7.
Product distribution and kinetic studies on the hydrosilylation of phenylacetylene by Ph3SiH, Ph2MeSiH, PhMe2SiH and Et3SiH were performed using bis‐[1,2‐diphenylphosphinoethane]norbornadienerhodium(I) hexafluorophosphate, 1, as catalyst. Pre‐equilibration of the catalyst with the acetylene produced hydrosilylations, pre‐equilibration with the silane did not. The catalyst showed a pronounced selectivity for cis‐addition to form β‐products, t‐PhCH­CHSiR3, unlike most hydrosilylation catalysts. The kinetic studies showed a hydrosilylation reaction that is zero order with respect to both acetylene and the silane, with a dependency upon catalyst concentration. The kobs value is directly influenced by the substituents on the silane: k(PhMe2SiH) > k (Et3SiH > k (Ph2MeSiH) > k (Ph3SiH). Intercalation of the catalyst in hectorite was not useful, since either no reaction occurred in non‐polar solvents, or extraction of the catalyst occurred in polar solvents to produce the same product distributions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Photochemically activated [Mo(CO)6] and [Mo(CO)44-nbd)] have been demonstrated to be very effective catalysts for hydrosilylation of norbornadiene (nbd) by tertiary (Et3SiH, Cl3SiH) and secondary (Et2SiH2 and Ph2SiH2) silanes to give 5-silyl-2-norbornene, which under the same reaction conditions transform in ring-opening metathesis polymerization (ROMP) to unsaturated polymers and to a double hydrosilylation product, 2,6-bis(silyl)norbornane. The yield of a particular reaction depends very strongly on the kind of silane involved. The reaction products were identified by means of chromatography (GC–MS) and 1H and 13C NMR spectroscopy. In photochemical reaction of [Mo(CO)44-nbd)] and Ph2SiH2 in cyclohexane-d12, η2-coordination of the SiH bond to the molybdenum atom is supported by 1H NMR spectroscopy due to the detection of two equal-intensity doublets with 2JHH = 5.4 Hz at δ 6.12 and −5.86 ppm.  相似文献   

9.
Reaction of Cl3SiR or (EtO)3SiR with [PW11O39]7− affords the disubstituted hybrid anions [PW11O39(SiR)2O]3−. These species have been characterized by IR spectroscopy in the solid state and by multinuclear NMR (1H, 29Si, 31P and 183W) and cyclic voltammetry in solution. The hydrosilylation of [PW11O39(Si-CHCH2)2O]3− has been achieved with Et3SiH and PhSiMe2H. These are the first examples of hydrosilylation on a hybrid tungstophosphate core. The chromogenic behaviour of hybrid species has been demonstrated in solution.  相似文献   

10.
Photolysis of the norbornadiene (nbd) complex [W(CO)44-nbd)] (1) creates a coordinatively unsaturated d6 species which interacts with the Si-H bond of tertiary and secondary silanes (Cl3SiH, Et3SiH, Et2SiH2, Ph2SiH2) to yield hydride complexes of varying stability. In reaction of complex 1 with Cl3SiH, oxidative addition of the Si-H bond to the tungsten(0) center gives the seven-coordinate tungsten(II) complex [WH(SiCl3)(CO)34-nbd)], which has been fully characterized by NMR spectroscopic methods (1H, 13C{1H}, 2D 1H-1H COSY, 2D 13C-1H HMQC and 29Si{1H}). Reaction of 1 with Et3SiH leads to the hydrosilylation of the η4-nbd ligand to selectively yield endo-2-triethylsilylnorbornene (nbeSiEt3). The latter silicon-substituted norbornene gives the unstable pentacarbonyl complex [W(CO)52-nbeSiEt3)], whose conversion leads to the initiation of ring-opening metathesis polymerization (ROMP). Reaction of secondary silanes (Et2SiH2 and Ph2SiH2) with 1 leads to the hydrosilylation and hydrogenation of nbd and the formation of bis(silyl)norbornane and silylnorbornane as the major products. In reaction of 1 and Et2SiH2, the intermediate dihydride complex [WH(μ-H-SiEt2)(CO)x4-nbd)] was detected by 1H and 13C NMR spectroscopy. As one of the products formed in photochemical reaction of W(CO)6 with Ph2SiH2, the dinuclear complex [{W(μ-η2-H-SiPh2)(CO)4}2] was identified by NMR spectroscopic methods.  相似文献   

11.
2-Aryloxybenzaldehydes and 2-(arylthio)benzaldehydes undergo reductive etherification in presence of 5 mol% In(OTf)3 and stoichiometric amount of Et3SiH under solvent free conditions to generate novel symmetrical dibenzyl ethers and thioethers in excellent yields. In(OTf)3 is found to be superior in terms of catalytic activity over the other metal triflates tested for the reaction. Xanthenes and thioxanthenes, as anticipated, could not be obtained under these conditions.  相似文献   

12.
Reactions of organomagnesium halides with group 13 metal halides lead to the formation of R3M type compounds (R = alkyl, aryl; M = Al, Ga, In) and are considered as the simplest methods of R3M compound syntheses. These seemingly simple reactions reveal a much more complex chemistry involving mixed magnesium-group 13 metal compounds. To elucidate the reaction course of reactions of organomagnesium halides with group 13 metal halides, we have studied reactions of R3M with organomagnesium halides. The interaction of Et3M with R1MgX led to the formation of following products being mixtures of crystalline ionic complexes with the general composition of [Et4-nR1nM][XMg (thf)5]+·(thf): [Et2.2Al(CH=CH2)1.8][BrMg (thf)5]+·(thf) ( 1 ), [Et3Ga(CH=CH2)][BrMg (thf)5]+·(thf) ( 2 ), [Et4Al][BrMg (thf)5]+·(thf) ( 3 ), [Et4Ga][BrMg (thf)5]+·(thf) ( 4 ), [Et2.9Al(C6H5)1.1][BrMg (thf)5]+·(thf) ( 5 ), [Et2.9Ga(C6H5)1.1][BrMg (thf)5]+·(thf) ( 6 ), [Et3.4GaMe0.6][IMg (thf)5]+·(thf) ( 7 ) and [Et4In][BrMg (thf)5]+·(thf) ( 8 ). A comparison of the production course of group 13 metal trialkyls R3M with a thermal decomposition of 1–8 products showed that reactions of MX3 with RMgX (X = Br, I; R = alkyl, aryl) yield initially intermediate ionic compounds, which must then be thermally decomposed to obtain pure R3M compounds. If group 13 metal bromides and iodides, and alkyl (aryl)magnesium bromides and iodides in thf are used, only intermediate products with the [R4M][XMg (thf)5]+·(thf) structure are formed.  相似文献   

13.
Indium(III) bromide catalyzed the deacetoxylation of propargylic acetates with Et3SiH to produce the corresponding internal alkynes containing a variety of functional groups in good yields.  相似文献   

14.
Syntheses and Structures of (Et4N)2[Re(CO)3(NCS)3] and (Et4N)[Re(CO)2Br4] Rhenium(I) and rhenium(III) carbonyl complexes can easily be prepared by ligand exchange reactions starting from (Et4N)2[Re(CO)3Br3]. Using nonoxidizing reagents the facial ReI(CO)3 unit remains and only the bromo ligands are exchanged. Following this procedure, (Et4N)2[Re(CO)3(NCS)3] can be obtained in high yield and purity using trimethylsilylisothiocyanate. The compound crystallizes in the monoclinic space group P21/n, a = 18.442(5), b = 17.724(3), c = 18.668(5) Å, β = 92.54(1)°, Z = 8. The NCS? ligands are coordinated via nitrogen. The reaction of [Re(CO)3Br3]2? with Br2 yields the rhenium(III) anion [Re(CO)2Br4]?. The tetraethylammonium salt of this complex crystallizes in the noncentrosymmetric, orthorhombic space group Cmc21, a = 8.311(1), b = 25.480(6), c = 8.624(1) Å, Z = 4. The carbonyl ligands are positioned in a cis arrangement. Their strong trans influence causes a lengthening of the Re? Br bond distances by at least 0.05 Å.  相似文献   

15.
We synthesized 1-ethylimidazolyl-substituted nitronyl nitroxides, i.e., 2-(1-ethylimidazol-4-yl)- (L4Et) and 2-(1-ethylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Et). The stable radical L5Et is an ethyl analog of 2-(1-methylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Me) described earlier, the reaction of which with Cu(hfac)2 (hfac is 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) leads to the formation of the [Cu(hfac)2(L5Me)2] jumping crystals. The reaction of Cu(hfac)2 with L5Et with reagent ratios 1: 2 and 1: 1 yields heterospin complexes [Cu(hfac)2(L5Et)2] and [Cu(hfac)2L5Et]2, respectively. X-ray diffraction study of the mononuclear complex [Cu(hfac)2(L5Et)2] determined that the compound has a packing similar to that of jumping crystals studied earlier, with the only difference being that the O...O contacts between neigh- boring nitroxide groups were found to be 0.3—0.5 Å longer than in [Cu(hfac)2(L5Me)2]. As a result of the lengthening of these contacts, [Cu(hfac)2(L5Et)2] crystals lack chemomechanical activi- ty. We found that when cooling crystals of binuclear complex [Cu(hfac)2L5Et]2 below 50 K, the antiferromagnetic exchange between unpaired electrons of the >N—?O groups of neighboring molecules leads to the full spin-pairing of the nitroxides, with only the Cu2+ ions contributing to the residual paramagnetism of the compound.  相似文献   

16.
The chemistry of [Re(CO)(NO)L2] fragments (L ? phosphorus donor) was explored. Starting from [Re(CO)5Cl] the synthesis of [Re2Cl2(μ-Cl)2(CO)4(NO)2] ( 1 ) was accomplished via the preparation of [Et4N]2[Re2Cl2(μ-Cl)2(CO)6] and nitrosylation of this compound with [NO][BF4]. Complex 1 was converted to [RecL2(CO)(NO)L2] complexes 2 ( a L = (MeO)3P; b L = (EtO)3P; c L = (i-PrO)3P; d L ? Me3P; e L ? Et3P; f L ? Cy3P) by heating with L in MeCN. In the case of the reaction of L = (MeO)3P, a trisubstitued compound mer-{ReCl2(NO)[P(OMe)3]3} 3 was also obtained. Replacement of the Cl ligands in 2a–e with Me groups was achieved by reacting them with MeLi in Et2O yielding cis, trans-[Re(CO)(NO)Me2L2]complexes 4a–e . Reaction of 2a–e with Li[BHEt3] led to substitution of one Cl by an H ligand with formation of [ReCl(CO)H(NO)L2] compounds 5a–;e , displaying trans-H,NO geometries. The hydride-transfer agent Na[AlH2(OCH2CH2OCH3)2] transformed 2 into the cis-dihydride systems [Re(CO)H2(NO)L2] 6a–f . Reductive carbonylation of 2a–d in the presence of Na/Hg and CO gave pentacoordinate [Re(CO)2(NO)L2] complexes 7b–d , and under comparable conditions the Cl substituents of 2b–f were replaced by tolane using Mg or t-BuLi giving trigonal bipyramidal [Re(CO)(NO)L2(PhC?CPh)] compounds 8b–f . Complexes 5c , 6a , and 8d were characterized by X-ray crystal-structure analysis.  相似文献   

17.
A borane B(C6F5)3‐catalyzed metathesis reaction between the Si?C bond in the cyclic (alkyl)(amino)germylene (CAAGe) 1 and the Si?H bond in a silane (R3SiH; 2 ) is reported. Mechanistic studies propose that the initial step of the reaction involves Si?H bond activation to furnish an ionic species [ 1 ‐SiR3]+[HB(C6F5)3]?, from which [Me3Si]+[HB(C6F5)3]? and an azagermole intermediate are generated. The former yields Me3SiH concomitant with the regeneration of B(C6F5)3 whereas the latter undergoes isomerization to afford CAAGes bearing various silyl groups on the carbon atom next to the germylene center. This strategy allows the straightforward synthesis of eight new CAAGes starting from 1 .  相似文献   

18.
Reaction between Ph2PPPh2 and [Et4N] [V(CO)6] yields cis-[Et4N]2-[(μ-Ph2PPPh2)2{V(CO)4}2], which may have a cyclic structure, and [Et4N]2-[(μ-Ph2PPPh2){V(CO)5}2]. An “open-chain”, monometallic species [η5-CpV(CO)3-Ph2PPPh2] is formed with [η5-CpV(CO)4]. Proposed structures are based on IR, 31P, and 51V NMR spectra.  相似文献   

19.
The structures of three racemic double salts of [Co(en)3]Cl3 (en is ethane-1,2-diamine, C2H8N2), namely, bis[tris(ethane-1,2-diamine-κ2N,N′)cobalt(III)] hexaaquasodium(I) heptachloride, [Co(en)3]2[Na(H2O)6]Cl7, bis[tris(ethane-1,2-diamine-κ2N,N′)cobalt(III)] hexaaquapotassium(I) heptachloride, [Co(en)3]2[K(H2O)6]Cl7, and ammonium bis[tris(ethane-1,2-diamine-κ2N,N′)cobalt(III)] heptachloride hexahydrate, (NH4)[Co(en)3]2Cl7·6H2O, have been determined, and the structural similarities with the parent compound, tris(ethane-1,2-diamine-κ2N,N′)cobalt(III) trichloride tetrahydrate, [Co(en)3]Cl3·4H2O, are highlighted. All four compounds crystallize in the trigonal space group Pc1. When compared with the parent compound, the double salts show a modest increase in the unit-cell volume. The structure of the chiral derivative [Λ-Co(en)3]2[Na(H2O)6]Cl7 has also been redetermined at cryogenic temperatures (120 K) and the disorder noted in a previous report has been accounted for.  相似文献   

20.
The chemistry of polyphosphorus cations has rapidly developed in recent years, but their coordination behavior has remained mostly unexplored. Herein, we describe the reactivity of [P5R2]+ cations with cyclopentadienyl metal complexes. The reaction of [CpArFe(μ‐Br)]2 (CpAr=C5(C6H4‐4‐Et)5) with [P5R2][GaCl4] (R=iPr and 2,4,6‐Me3C6H2 (Mes)) afforded bicyclo[1.1.0]pentaphosphanes ( 1‐R , R=iPr and Mes), showing an unsymmetric “butterfly” structure. The same products 1‐R were formed from K[CpAr] and [P5R2][GaCl4]. The cationic complexes [CpArCo(η4‐P5R2)][GaCl4] ( 2‐R [GaCl4], R=iPr and Cy) and [(CpArNi)23:3‐P5R2)][GaCl4] ( 3‐R [GaCl4]) were obtained from [P5R2][GaCl4] and [CpArM(μ‐Br)]2 (M=Co and Ni) as well as by using low‐valent “CpArMI” sources. Anion metathesis of 2‐R [GaCl4] and 3‐R [GaCl4] was achieved with Na[BArF24]. The P5 framework of the resulting salts 2‐R [BArF24] can be further functionalized with nucleophiles. Thus reactions with [Et4N]X (X=CN and Cl) give unprecedented cyano‐ and chloro‐functionalized complexes, while organo‐functionalization was achieved with CyMgCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号