首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the thermal behavior of the regularity modes in Raman spectra of polyethylene with different densities and random ethylene/1-hexene copolymers with varying content of comonomer are studied. We demonstrate especially that the vibrational modes at 1062 and 2850 cm↙1 are related to a critical sequence length of trans-conformers of 6⬜8 CH2 groups, while the modes at 1130, 1170, 1295, and 2883 cm↙1 indicate a critical sequence length of trans-conformers of 18 CH2 groups. Upon increasing the 1-hexene content in the ethylene/1-hexene copolymers, the evolution of the intensities of the Raman modes at 1062, 1130, 1170, 1295, and 1417 cm↙1, normalized to the intensity of the band at 2850 cm↙1, is similar to the evolution of the intensities of the same modes in the Raman spectra of low density polyethylene at increasing temperature. This observation however contrasts with that in the Raman spectra of polyethylenes with middle and high densities. We suppose that these results can be explained by similarities in the structure of non-crystalline areas of low density polyethylene and the ethylene/1-hexene copolymers, which contain significant amounts of short sequences of trans-conformers.  相似文献   

2.
《Vibrational Spectroscopy》2002,28(2):209-221
Syngenite (K2Ca(SO4)2·H2O), formed during treatment of manure with sulphuric acid, was studied by infrared, near-infrared (NIR) and Raman spectroscopy. Cs site symmetry was determined for the two sulphate groups in syngenite (P21/m), so all bands are both infrared and Raman active. The split ν1 (two Raman+two infrared bands) was observed at 981 and 1000 cm−1. The split ν2 (four Raman+four infrared bands) was observed in the Raman spectrum at 424, 441, 471 and 491 cm−1. In the infrared spectrum, only one band was observed at 439 cm−1. From the split ν3 (six Raman+six infrared) bands three 298 K Raman bands were observed at 1117, 1138 and 1166 cm−1. Cooling to 77 K resulted in four bands at 1119, 1136, 1144 and 1167 cm−1. In the infrared spectrum, five bands were observed at 1110, 1125, 1136, 1148 and 1193 cm−1. From the split ν4 (six infrared+six Raman bands) four bands were observed in the infrared spectrum at 604, 617, 644 and 657 cm−1. The 298 K Raman spectrum showed one band at 641 cm−1, while at 77 K four bands were observed at 607, 621, 634 and 643 cm−1. Crystal water is observed in the infrared spectrum by the OH-liberation mode at 754 cm−1, OH-bending mode at 1631 cm−1, OH-stretching modes at 3248 (symmetric) and 3377 cm−1 (antisymmetric) and a combination band at 3510 cm−1 of the H-bonded OH-mode plus the OH-stretching mode. The near-infrared spectrum gave information about the crystal water resulting in overtone and combination bands of OH-liberation, OH-bending and OH-stretching modes.  相似文献   

3.
Raman spectra of coquandite Sb6O8(SO4)·(H2O) were studied, and related to the structure of the mineral. Raman bands observed at 970, 990 and 1007 cm?1 and a series of overlapping bands are observed at 1072, 1100, 1151 and 1217 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes respectively. Raman bands at 629, 638, 690, 751 and 787 cm?1 are attributed to the SbO stretching vibrations. Raman bands at 600 and 610 cm?1 and at 429 and 459 cm?1 are assigned to the SO42? ν4 and ν2 bending modes. Raman bands at 359 and 375 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.  相似文献   

4.
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2·2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm?1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm?1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm?1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm?1 and at 417, 434 and 482 cm?1 are assigned to the SO42? ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.  相似文献   

5.
The paper presents the study of selected montmorillonite standards by Raman spectroscopy and microscopy supported by elemental analysis, X-ray powder diffraction analysis and thermal analysis. Dispersive Raman spectroscopy with excitation lasers of 532 nm and 780 nm, dispersive Raman microscopy with excitation laser of 532 nm and 100× magnifying lens, and Fourier Transform-Raman spectroscopy with excitation laser of 1064 nm were used for the analysis of four montmorillonites (Kunipia-F, SWy-2, STx-1b and SAz-2). These mineral standards differed mainly in the type of interlayer cation and substitution of octahedral aluminium by magnesium or iron. A comparison of measured Raman spectra of montmorillonite with regard to their level of fluorescence and the presence of characteristic spectral bands was carried out. Almost all measured spectra of montmorillonites were significantly affected by fluorescence and only one sample was influenced by fluorescence slightly or not at all. In the spectra of tested montmorillonites, several characteristic Raman bands were found. The most intensive band at 96 cm−1 belongs to deformation vibrations of interlayer cations. The band at 200 cm−1 corresponds to deformation vibrations of the AlO6 octahedron and at 710 cm−1 can be assigned to deformation vibrations of the SiO4 tetrahedron. The band at 3620 cm−1 corresponds to the stretching vibration of structural OH groups in montmorillonites.  相似文献   

6.
We present the Raman spectra of l-methionine (C5H11NO2S) monocrystals obtained in the spectral region ranging from 3200 to 50 cm−1 at temperatures from 20 to 375 K. We investigated the dynamics of the different functional groups in l-methionine and related their behaviour to the structural transition previously reported at about 307 K. Additionally, on cooling, changes in the intensities of some Raman bands were associated with conformational changes of at least one of the two l-methionine conformers in the monoclinic unit cell in the interval 160–140 K. Thermal analysis and DFT calculations provide further support to the interpretation of the Raman results.  相似文献   

7.
《Vibrational Spectroscopy》2007,43(2):288-291
We report significant difference in the Raman spectra of two different kinds of CaB6 single crystals grown from boron purity 99.9% (3N) or 99.9999% (6N), respectively. Our Raman spectra of CaB6 (3N), which are similar to those of previous measurement [N. Ogita, S. Nagai, N. Okamoto, M. Udagawa, F. Iga, M. Sera, J. Akimitsu, S. Kunii, Phys. Rev. B 68 (2003) 224305], show peaks at 781.3 cm−1 (T2g), 1140.1 cm−1 (Eg), and 1283.5 cm−1 (A1g). The Eg mode shows a characteristic double-peak feature due to an additional weak broad peak centered at 1156.0 cm−1. However, the Raman spectra of CaB6 (6N) show sharp peaks at 772.5 cm−1 (T2g), 1137.9 cm−1 (Eg), and 1266.6 cm−1 (A1g). The peak frequencies are down shifted as much as 17 cm−1. In addition, no additional peak feature is observed for the Eg mode so that the mode is symmetric in the case of CaB6 (6N). The X-ray powder diffraction patterns for both CaB6 (3N) and CaB6 (6N) show that the lattice parameters are essentially the same. The majority of the impurity in the 99.9% (3N) boron is assessed to be C. Thus we prepared Ca(B0.995C0.005)6, CaB6 (6N) doped with C, and looked for the difference in the Raman spectra. The Raman spectra of Ca(B0.995C0.005)6 are nearly identical to those of CaB6 (6N), indicating that the difference in the Raman spectra of CaB6 (3N) and CaB6 (6N) is not due to C impurity. However, presence of impurity, even if small amount, seems to be enough to trigger local-structure changes to lower symmetry inducing the difference in Raman spectra of CaB6 (3N) and CaB6 (6N).  相似文献   

8.
《Vibrational Spectroscopy》2010,52(2):283-288
The far-infrared and Raman spectra of binuclear molecules [Me2AuX]2 (X = Cl, Br, I) and [Me2Au(OOCR)]2 (R = Me, CF3, But, Ph) in the 600–70 cm−1 region are reported. The experimentally measured vibrational frequencies of [Me2AuX]2 are in a good agreement with density functional theory predictions. The Au…Au vibrational interactions predicted to be in the 270–60 cm−1 region of [Me2AuX]2 far-IR and Raman spectra have been observed. The Raman-active Au…Au vibrations of the [Me2Au(OOCR)]2 molecules were found to be in the same region as those of [Me2AuX]2. The Au–X stretching modes were observed between 100 and 250 cm−1 in accordance with the DFT predictions. Their frequencies in the IR spectra of [Me2AuX]2 increase in the sequence I < Br < Cl while the AuC2 stretching frequencies decrease in the same order. This fact might be an evidence of the decreasing covalent character of the gold-halogen bridges. The Au–O stretching bands of dimethylgold(III) carboxylates have been observed in the 500–250 cm−1 region, and Au–C stretching frequencies of both [Me2AuX]2 and [Me2Au(OOCR)]2 compounds have been found between 600 and 500 cm−1.  相似文献   

9.
The infrared spectra of ethylmethylfluorosilane (CH3SiHFCH2CH3) have been recorded as a vapour, liquid and solid at 78 K in the 4000–50 cm−1 range and isolated in an argon matrix at ca. 5 K. Infrared spectra of two different solid phases were obtained after annealing to temperatures of 120 and 130 K, and recooling to 78 K. Although the IR spectra were quite similar in the MIR region, certain differences were noted in the FIR region below 400 cm−1. The most stable conformer MeMe was present after annealing to 130 K, but three bands belonging to MeH were detected after annealing to 120 K. Various infrared bands changed intensity when the argon matrix was annealed to temperatures between 20 and 35 K, and some of these were related to changes in the conformational abundance.Raman spectra of the liquid were recorded at room temperature and at various temperatures between 295 and 153 K. Spectra of an amorphous and annealed solid were recorded at 78 K. In the variable temperature Raman spectra, various bands changed in intensity and were interpreted in terms of conformational equilibria between the three possible conformers. Complete assignments were made for all the bands of the most stable conformer MeMe. From various bands assigned to the three conformers, the conformational enthalpy difference ΔH from MeMe to the intermediate energy conformer MeH was found to be 0.5 kJ mol−1 and to the highest conformer MeF was 0.7 kJ mol−1. At ambient temperature this leads to 39% MeMe, 32% MeH and 29% of the MeF conformer in the liquid.Ab initio calculations in the RHF, MP2, DFT approximations and very accurate G2 calculations were carried out. With one exception, the MeMe conformer had the lowest enthalpy in all these calculations, the MeH had the intermediate and the MeF the highest enthalpy, and the calculations were in good agreement with the measurements.  相似文献   

10.
Temperature dependent Raman study of C–H in-plane bending mode (~1163 cm?1 and ~1190 cm?1) and C–C stretching mode of phenyl ring (~1571 cm?1 and ~1594 cm?1) of N-(4-n-pentyloxybenzylidene)-4′-heptylaniline (5O.7) has been done. Vibrational assignment and potential energy distribution (PED) of individual modes have been calculated employing density functional theory (DFT) for the first time. The SB  SC transition is nicely depicted in the variation of the linewidth of the ~1163 cm?1 band and the peak position of ~1594 cm?1 band with temperature. Because of a small amount of charge density transfer from the core part to the alkyl chain region, the ~1163 cm?1 band shifts towards lower wavenumber side whereas the ~1190 cm?1 band towards higher wavenumber side at SB  SC transition. The ~1571 cm?1 and ~1594 cm?1 bands are assigned as 8a and 8b modes, whose relative intensity variation with temperature gives the evidence of increased possibility of C–H bending motion of the linking group and the C–C stretching of the alkyl chain in SC phase.  相似文献   

11.
The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.  相似文献   

12.
We investigate the nature of bonding and charge states in (U1−yCey)O2 (y = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) by Raman spectroscopy. Raman spectrum of UO2 exhibits two prominent bands below 1000 cm−1, a F2g mode at 446 cm−1 and a F1u LO mode at 578 cm−1. As y is increased from 0 to 0.6, the F1u exhibits a large blue shift of 90 cm−1, and from y = 0.6 to 1.0, a red shift of 54 cm−1. We show that our results can be interpreted as arising from anisotropic compression/relaxation of the lattice under Ce substitution and this can give an indication of its charge states. Alternate interpretations have been given in the literature on the effect of substituents and dopants to the Raman spectra of UO2 and CeO2. The present interpretation of chemical stress effects can be taken as another plausible explanation.  相似文献   

13.
We calculated IR, nonresonance Raman spectra and vertical electronic transitions of the zigzag single-walled and double-walled boron nitride nanotubes ((0,n)-SWBNNTs and (0,n)@(0,2n)-DWBNNTs). In the low frequency range below 600 cm−1, the calculated Raman spectra of the nanotubes showed that RBMs (radial breathing modes) are strongly diameter-dependent, and in addition the RBMs of the DWBNNTs are blue-shifted reference to their corresponding one in the Raman spectra of the isolated (0,n)-SWBNNTs. In the high frequency range above ∼1200 cm−1, two proximate Raman features with symmetries of the A1g (∼1355 ± 10 cm−1) and E2g (∼1330 ± 25 cm−1) first increase in frequency then approach a constant value of ∼1365 and ∼1356 cm−1, respectively, with increasing tubes’ diameter, which is in excellent agreement with experimental observations. The calculated IR spectra exhibited IR features in the range of 1200–1550 cm−1 and in mid-frequency region are consistent with experiments. The calculated dipole allowed singlet–singlet and triplet–triplet electronic transitions suggesting a charge transfer process between the outer- and inner-shells of the DWBNNTs as well as, upon irradiation, the possibility of a system that can undergo internal conversion (IC) and intersystem crossing (ISC) processes, besides the photochemical and other photophysical processes.  相似文献   

14.
The samples of dibarium magnesium orthoborate Ba2Mg(BO3)2 were synthesized by solid-state reaction. The X-ray diffraction (XRD) patterns and Raman spectra of the samples were collected. Electronic structure and vibrational spectroscopy of Ba2Mg(BO3)2 were systematically investigated by first principle calculation. A direct band gap of 4.4 eV was obtained from the calculated electronic structure results. The top valence band is constructed from O 2p states and the low conduction band mainly consists of Ba 5d states. Raman spectra for Ba2Mg(BO3)2 polycrystalline were obtained at ambient temperature. The factor group analysis results show the total lattice modes are 5Eu + 4A2u + 5Eg + 4A1g + 1A2g + 1A1u, of which 5Eg + 4A1g are Raman-active. Furthermore, we obtained the Raman active vibrational modes as well as their eigenfrequencies using first-principle calculation. With the assistance of the first-principle calculation and factor group analysis results, Raman bands of Ba2Mg(BO3)2 were assigned as Eg (42 cm−1), A1g (85 cm−1), Eg (156 cm−1), Eg (237 cm−1), A1g (286 cm−1), Eg (564 cm−1), A1g (761 cm−1), A1g (909 cm−1), Eg (1165 cm−1). The strongest band at 928 cm−1 in the experimental spectrum is assigned to totally symmetric stretching mode of the BO3 units.  相似文献   

15.
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the ν4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the ν2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.  相似文献   

16.
Infrared spectra (3500–500 cm−1) of polycrystalline (C5H5NH)5Bi2Br11 samples were investigated within the temperature range 27–456 K. The assignments of the observed bands in the spectra measured at 27, 310 and 456 K are proposed. A temperature dependence of the wavenumbers and full width at half maximum (FWHM) of the bands arising from some internal vibrations of pyridinium cations are analysed in order to explain the role of cations in the mechanism of the phase transition at 118 (paraelectric–ferroelectric) and 403 K. It was found that numerous bands arising from the internal modes of the cations exhibit the splitting in the vicinity of both phase transitions, that indicates a distinct changes in the motional state of the pyridinium moieties.  相似文献   

17.
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.  相似文献   

18.
Novel hexabutylsulphonyltribenzotetraazachlorin–fullerene (C60) complexes of iron (FeHBSTBTAC–C60) and cobalt (CoHBSTBTAC–C60) have been synthesized and their electrochemistry and oxygen reduction reaction (ORR) compared with their octabutylsulphonylphthalocyanine analogues (FeOBSPc and CoOBSPc). It is proved that electron-withdrawing substituents (–SO2Bu and C60) on phthalocyanine macrocycle exhibit distinct impact on the solution electrochemistry of these metallophthalocyanine (MPc) complexes. The more electron-withdrawing C60 substituent suppressed ORR compared to the –SO2Bu in alkaline medium. FeOBSPc showed the best ORR activity involving a direct 4-electron mechanism, a rate constant of ~1 × 108 cm3 mol?1 s?1 and a Tafel slope of ?171 mV dec?1.  相似文献   

19.
Raman and infrared spectroscopy were applied for the vibrational characterization of lapachol and its pyran derivatives, α-lapachone and β-lapachone. Experimental spectra of solid state samples were acquired between 4000 and 100 cm−1 in Raman experiments, and between 4000 and 600 cm−1 (mid-infrared) and 600–100 cm−1 (far-infrared) with FTIR spectroscopy, respectively. Full structure optimization and theoretical vibrational wavenumbers were calculated at the B3LYP/6-31 + + G(d,p) level. Detailed assignments of vibrational modes in an experimental and theoretical spectra were based on potential energy distribution analyses, using Veda 4.1 software. Clear differentiation between the three compounds was verified in the region between 1725 and 1525 cm−1, in which the ν(CO) and ν(CC) modes of the quinone moiety were assigned.  相似文献   

20.
Natural berlinite from a heated sedimentary sequence in Cioclovina Cave (Romania) was studied using Raman spectroscopy complemented with infrared techniques. Vibrational data acquired at room temperature were compared with those reported for synthetic berlinite in ambient conditions. The symmetry of the (PO4)3? units is confirmed by the observation of characteristic bands attributed to the ν1(PO4)3? stretching mode, both the ν4 and ν2 bending regions at 500–595 cm?1, and 350–500 cm?1, respectively. The berlinite Raman fingerprint was unambiguously identified at 1111 and 1104 cm?1, confirming the identity of the species and elucidating some controversial reports in the mineralogy field.The vibrational data of natural berlinite relates to its crystallography, and along with the spectra–structure correlation, confirmed an almost ideal natural berlinite crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号