首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The technological needs imposed by the exponential miniaturization trend of conventional electronic devices has drawn attention towards the development of smaller and faster devices like ultrafast molecular switches. In recent years molecular switches emerge again in the focus of active and innovative research with state-of-the-art optical tools recording their dynamics in real time. Still many questions about the underlying microscopic mechanism are left open, including potential factors that effect the switching process in either way, improve or worsen it. Due to the complexity of such molecules it is difficult to obtain a global answer from experiment alone. On the other side molecular switches are generally too large for a complete quantum chemical and quantum dynamical calculation. In our group we therefore developed an ab initio based modular model to handle the laser induced quantum dynamics in molecular switches like fulgides. It enables us to study the effect of internal molecular coupling and of the molecular response to external fields. We can investigate the related wave packet dynamics, the switching efficiency and the controllability. Our results focus on the laser induced ring opening in fulgides, which equals one direction of the switching process. Presented are the influence of a conical intersection seam and of time-dependent potentials, mimicking the mean interaction with the environment. Furthermore the relation of controllability and the wave packet's momentum is studied and the influence of potential barriers on the switching dynamics is shown.  相似文献   

2.
Adsorption structures formed from a class of planar organic molecules on the Au(111) surface under ultrahigh vacuum conditions have been characterized using scanning tunneling microscopy (STM). The molecules have different geometries, linear, bent, or three-spoke, but all consist of a conjugated aromatic backbone formed from three or four benzene rings connected by ethynylene spokes and functionalized at all ends with an aldehyde, a hydroxyl, and a bulky tert-butyl group. Upon adsorption, the molecules adopt different surface conformations some of which are chiral. For the majority of the observed adsorption structures, chirality is expressed also in the molecular tiling pattern, and the two levels of chirality display a high degree of correlation. The formation and chiral ordering of the self-assembled structures are shown to result from dynamic interchanges between a diffusing lattice gas and the nucleated islands, as well as from a chiral switching process in which molecules alter their conformation by an intramolecular rotation around a molecular spoke, enabling them to accommodate to the tiling pattern of the surrounding molecular structures. The kinetics of the conformational switching is investigated from time-resolved, variable temperature STM, showing the process to involve an activation energy of approximately 0.3 eV depending on the local molecular environment. The molecule-molecule interactions appear primarily to be of van der Waals character, despite the investigated compounds having functional moieties capable of forming intermolecular hydrogen bonds.  相似文献   

3.
The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans ‐to‐cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed.  相似文献   

4.
This article describes our ongoing efforts to understand dynamical processes such as rotational diffusion and photoisomerization in polymorphic environments of a block copolymer. The objective is to explore how the typical properties of a block copolymer solution such as critical micelle temperature (CMT) and temperature-induced sol-gel transition influence the rotational diffusion of hydrophobic solute molecules. Rotational diffusion of solute molecules differs significantly below and above the CMT of a block copolymer solution, while there is no influence of sol-gel transition on solute rotation. This is rationalized on the basis of the site of solubilization of the solute molecules which is the palisade layer of the micelles in both phases and unaffected by gelation. A similar result has been obtained in case of photoisomerization studies carried out with a carbocyanine derivative in the sol and gel phases of the block copolymer. The isomerization studies have been extended to the reverse phases (sol and gel phases) of the block copolymer to explore the nature of the water present in the cores of the reverse micelles. Our results provide evidence for the existence of water droplets with properties resembling bulk water. In essence, we show that despite having vastly differing bulk properties, both the solution and gel phases (normal as well as reverse) offer identical microscopic environment.  相似文献   

5.
N,N′-disubstituted indigos are photoswitchable molecules that have recently caught the attention due to their addressability by red-light. When alkyl and aryl groups are utilized as the N-substituents, the thermal half-lives of Z isomers can be tuned independently while maintaining the advantageous red-shifted absorption spectra. To utilize these molecules in real-world applications, it is of immense importance to understand how their molecular structures as well as the environment influence their switching properties. To this end, we probed their photoisomerization mechanism by carrying out photophysical and computational studies in solvents of different polarities. The fluorescence and transient absorption experiments suggest for more polar excited and transition states, which explains the bathochromic shifts of absorption spectra and shorter thermal half-lives. On the other hand, the quantum chemical calculations reveal that in contrast to N-carbonyl groups, N-alkyl and N-aryl substituents are not strongly conjugated with the indigo chromophore and can thus serve as a tool for tuning the thermal stability of Z isomers. Both approaches are combined to provide in-depth understandings of how indigos undergo photoswitching as well as how they are influenced by N-substituent and the chemical surroundings. These mechanistic insights will serve as guiding principles for designing molecules eyeing broader applications.  相似文献   

6.
The advent of scanning tunneling microscopy (STM) has permitted a detailed atomic view of organic molecules adsorbed on solid surfaces. In this work, we make use of the STM to provide an unprecedented direct single-molecule perspective on the cis-trans photoisomerization of stilbene molecules within ordered monolayers physisorbed on the Ag/Ge(111)-( radical3x radical3)R30 degrees surface. The STM view of the molecular structure transformation upon irradiation provides direct evidence for the generally accepted one-bond-flip mechanism proposed for the photoisomerization process. We also find that the surface environment produces a profound effect on the reaction mechanism. The reaction is observed to proceed mainly through pairs of co-isomerizing molecules situated at domain boundaries. To explain these observations, we propose a mechanism whereby excitation migrates to the domain boundary and the reaction occurs through a biexciton reaction pathway.  相似文献   

7.
Murphy SK  Baik C  Lu JS  Wang S 《Organic letters》2010,12(22):5266-5269
Silyl-bridged dimers of a ppy-BMes(2) (ppy = 2-phenylpyridine, Mes = mesityl) photochrome were found to undergo photochromic switching involving a single boryl unit only. A through-space intramolecular energy transfer was found to be responsible for the single-chromophore isomerization phenomenon and fluorescence quenching. Steric congestion in the diboryl molecules was found to have an impact on photoisomerization quantum efficiency.  相似文献   

8.
The efficiency of interphotochromic energy transfer in the biphotochromic styrylpyridine?benzomerocyanine dyad is 66% due to spatial and spectral separation of two photochromes. Therefore, both photochromes conserve their ability to photoisomerization. By using the photoisomerization of the photochromes for switching between different photostationary states, it has been shown that the dyad can function as photonic three- and four-input molecular logic gates, particularly a 4-to-2 encoder and a parity checker.  相似文献   

9.
Characterizing the stereochemistry of transient photoisomerization products remains a big challenge for the design of molecular machines, such as unidirectional molecular motors. Often these states are not stable long enough to be characterized in detail using conventional spectroscopic tools. The structurally simple camphorquinone imine 1 serves to illustrate the advantage of combining the matrix‐isolation technique with vibrational circular dichroism (VCD) spectroscopy for the investigation of photoisomerizations of chiral molecules. In particular, it is shown that both (E )‐ and (Z )‐ 1 can be generated photochemically at cryogenic temperatures in an argon matrix, and more importantly, that the stereochemistry of both switching states can be characterized reliably.  相似文献   

10.
Laser control schemes of reactions of photoswitching functional molecules are proposed based on the quantum mechanical wave-packet dynamics and the design of laser parameters. The appropriately designed quadratically chirped laser pulses can achieve nearly complete transitions of wave packet among electronic states. The laser parameters can be optimized by using the Zhu-Nakamura theory of nonadiabatic transition. This method is effective not only for the initial photoexcitation process but also for the pump and dump scheme in the middle of the overall photoswitching process. The effects of momentum of the wave packet crossing a conical intersection on the branching ratio of products have also been clarified. These control schemes mentioned above are successfully applied to the cyclohexadiene/hexatriene photoisomerization (ring-opening) process which is the reaction center of practical photoswitching molecules such as diarylethenes. The overall efficiency of the ring opening can be appreciably increased by using the appropriately designed laser pulses compared to that of the natural photoisomerization without any control schemes.  相似文献   

11.
Azobenzene has been widely used as a photoregulator due to its reversible photoisomerization, large structural change between E and Z isomers, high photoisomerization yield, and high chemical stability. On the other hand, some azobenzene derivatives can be used as universal quenchers for many fluorophores. Nucleic acid is a good candidate to be modified because it is not only the template of gene expression but also widely used for building well‐organized nanostructures and nanodevices. Because the size and polarity distribution of the azobenzene molecule is similar to a nucleobase pair, the introduction of azobenzene into nucleic acids has been shown to be an ingenious molecular design for constructing light‐switching biosystems or light‐driven nanomachines. Here we review recent advances in azobenzene‐modified nucleic acids and their applications for artificial regulation of gene expression and enzymatic reactions, construction of photoresponsive nanostructures and nanodevices, molecular beacons, as well as obtaining structural information using the introduced azobenzene as an internal probe. In particular, nucleic acids bearing multiple azobenzenes can be used as a novel artificial nanomaterial with merits of high sequence specificity, regular duplex structure, and high photoregulation efficiency. The combination of functional groups with biomolecules may further advance the development of chemical biotechnology and biomolecular engineering.  相似文献   

12.
Pure organic radical molecules on metal surfaces are of great significance in exploration of the electron spin behavior. However, only a few of them are investigated in surface studies due to their poor thermal stability. The adsorption and conformational switching of two verdazyl radical molecules, namely, 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-2-yl)-6-oxoverdazyl (B2P) and 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-4-yl)-6-oxoverdazyl (B4P), are studied by scanning tunneling microscopy (STM) and density functional theory (DFT). The adsorbed B2P molecules on Au(111) form dimers, trimers and tetramers without any ordered assembly structure in which two distinct appearances of B2P in STM images are observed and assigned to be its "P" and "T" conformations. The "P" conformation molecules appear in the STM image with a large elliptical protrusion and two small ones of equal size, while the "T" ones appear with a large protrusion and two small ones of different size. Likewise, the B4P molecules on Au(111) form dimers at low coverage, strip structure at medium coverage and assembled structure at high coverage which also consists of above-mentioned two conformations. Both B2P molecules and B4P molecules are held together by weak intermolecular interaction rather than chemical bond. STM tip induced conformational switching of both verdayzl radicals is observed at the bias voltage of +2.0 V. The "T" conformation of B2P can be switched to the "P" while the "P" conformation of B4P can be switched to the "T" one. For both molecules, such a conformational switching is irreversible. The DFT calculations with Perdew-Burke-Ernzerhof version exchange-correlation functional are used to optimize the model structure and simulate the STM images. STM images of several possible molecular conformations with different isopropyl orientation and different tilt angle between verdazyl radical and Au(111) surface are simulated. For conformations with different isopropyl orientation, the STM simulated images are similar, while different tilt angles of verdazyl radical lead to significantly different STM simulated images. Combined STM experiments and DFT simulations reveal that the conformational switching originates from the change of tilting angle between the verdazyl radical and Au(111) surface. The tilt angles in "P" and "T" conformations are 0° and 50°, respectively. In this study, two different adsorption conformations of verdazyl radicals on the Au(111) surface are presented and their exact adsorption structures are identified. This study provides a possible way to study the relationship between the electron spin and configuration conversion of pure organic radical molecules and a reference for designing more conformational switchable radical molecules that can be employed as interesting molecular switches.  相似文献   

13.
将有机场效应晶体管用于传感和开关实际应用的主要阻碍之一是其破坏性传感机制产生的一系列问题. 这里我们报道了一种智能的系统, 用光致变色分子螺吡喃(SP)和聚甲基丙烯酸甲酯(PMMA)结合作为栅介电材料, 得到的器件能以一种无损的方式, 通过光可逆调控器件的导电性能. 当螺吡喃分子发生可逆的光学异构时, 器件的电容和导电性随之发生显著而可逆的变化. 这种构象诱导电感耦合的作用机理提供了一种制备功能器件的新方法, 可以推广为利用其它刺激响应型分子来制备特定功能器件的普适性方法.  相似文献   

14.
A new pillard crystal packing of a hydrated [Zn(PABA)2(H2O)]·H2O (PABA = p‐aminobenzoate) ( 1 ) was obtained starting from a layered zinc hydroxide with PABA as organic substrate. Compound 1 was characterized in the solid state by crystal structure analysis and in solution by 13C‐ and 1H‐NMR spectroscopy. In contrast to the known hydrate of [Zn(PABA)2]·1.5H2O the water molecules of crystal packing of 1 are involved in the coordination sphere of the zinc atoms, forming hydrogen bonding interactions between amino groups of PABA and water molecules.  相似文献   

15.
The synthesis, characterization, and X-ray crystal structures of [Re(diimine)(CO)(3)(dpe)](PF(6)) (dpe = 1,2-di(4-pyridyl)ethylene) compounds are reported. The cis-dpe complexes exhibit yellow luminescence after UV excitation, whereas the trans-dpe counterparts are nonluminescent. The luminescence quantum yields of the cis-dpe complexes are strongly dependent on the identity of the diimine ligand. Irradiation (350 nm) of the trans-dpe complexes induces trans --> cis dpe-ligand isomerization with quantum yields on the order of 0.2, and this process leads to an on-switching of yellow luminescence. After long 350-nm irradiation times, a steady state composed of roughly 70% cis- and 30% trans-dpe complexes is reached. The reverse cis --> trans photoisomerization reaction is induced by irradiating the cis-dpe complexes at 250 nm, switching off the yellow luminescence. For 250-nm excitation, photodecomposition of the [Re(diimine)(CO)(3)(dpe)](+) complexes competes efficiently with photoisomerization.  相似文献   

16.
The influence of the charge separation during the trans-cis conformational change on the surface of azobenzene 6Az10PVA monolayer on the polar liquid-crystal monolayer film, such as 4-n-pentyl-4'-cyanobiphenyl(5CB), is investigated. The effective anchoring energy (in the Rapini-Papolar form) is phenomenologically described in the framework of the molecular model, which takes into account the interaction between the surface polarization and surface electric field, for number of conformational states of the boundary surface. It is shown, using the experimental data for the voltage across the 6Az10PVA+5CB film, provided by the surface-potential technique, that the charge separation during the conformational changing, caused by the UV irradiation, may lead to changing of the surface alignment of liquid-crystalline molecules. The influence of the photoisomerization process on the orientational order parameter S2(t) using the optical polarized absorption measurement is also investigated.  相似文献   

17.
The molecular intrinsic characteristic contour (MlCC) is defined based on the classical turning point of electron movement in a molecule. Three typical organic molecules, i.e. methane, methanol and formic acid, were employed as examples for detailed introduction of our method. Investigations on the cross-sections of MlCC provide important information about atomic size changing in the process of forming molecules. The electron density distributions on the MlCCs of these molecules were calculated and shown for the first time. Results showed that the electron density distribution on the MlCC correlates closely with molecular chemical properties, and it provides a new insight into molecular boundary.  相似文献   

18.
We synthesized azobenzene-conjugated bis(terpyridine) Ru(II) and Rh(III) mononuclear and dinuclear complexes and investigated their photochemical properties on excitation of the azo pi-pi band upon 366 nm light irradiation. The Ru mononuclear complex underwent trans-to-cis photoisomerization to reach the photostationary state with only 20% of the cis form, while the Ru dinuclear complex did not isomerize at all photochemically. On the other hand, the mononuclear and dinuclear Rh complexes showed almost complete trans-to-cis photoisomerization behavior. Cis forms of the Rh complexes thermally returned to the trans form at a much slower rate than those of organic azobenzenes, but they did not isomerize photochemically. The reduction potential of the cis forms was 80 mV more negative than that of the trans forms. The photoisomerization quantum yields of the Rh complexes were strongly dependent on the polarity, viscosity, and donor site of the solvents as well as the size of the counterions. We investigated the photoisomerization process of these complexes using femtosecond absorption spectroscopy. For the Rh complexes, we observed S(n) <-- S(2) and S(n) <-- S(1) absorption bands similar to those of organic azobenzenes. For the Ru complexes, we observed very fast bleaching of the MLCT band of the Ru complex, which indicated that the energy transfer pathway to the MLCT was the primary cause of the depressed photoisomerization. The electronic structures, which were estimated from ZINDO molecular orbital calculation, supported the different photochemical reaction behavior between the Ru and Rh complexes.  相似文献   

19.
In chemical response the BH3 and BF3 molecules undergo the physical process of planar (D3h) to pyramidal (C3v) reorganization in shape as the condition precedent to the event of chemical reaction under the requirement of symmetry. A frontier orbital and density functional study of the variation of the stability of electronic structures and chemical reactivity of associated with the physical process of D3h to C3v geometry reorganization has been performed. The theoretical parameters viz. eigenvalues of HOMO and LUMO, the HOMO and LUMO energy gap, the global hardness and global softness, the chemical potential, the condensed Fukui function, and local softness of B atom, the reaction site, have been computed over a wide range of ∠XBX angles. The nature of variation in the intrinsic chemical reactivity, global and local, of the molecules associated with their geometry reorganization during the chemical event of charge transfer interaction involving their frontier molecular orbitals has been quantitatively explored. The hardness profiles as a function of reaction coordinates are consistent with the principle of maximum hardness (PMH). Results demonstrate that the hardness and softness are not a static and invariable property of molecules but a dynamic and variable function of molecular structure. The hardness parameters and the HOMO–LUMO gap of the molecules are so modified with the distortion of molecular geometry that, after a certain stage of molecular deformation, the profiles of such parameters of the molecules intersect and cross each other, signifying that the relative order of the intrinsic hardness of their equilibrium geometry is reversed. The intrinsically hard molecule BF3 becomes softer than the intrinsically soft molecule BH3 as a consequence of structural distortion. The increase in chemical reactivity computed in terms of density functional parameters are transparent and justified in terms of the profiles of the eigenvalues of the frontier orbitals. The profiles of chemical potential reveal the inherent difference in the tendency of backdonation from two molecules. The computed values of Fukui functions and local softness parameters of the B atom site demonstrate that the concept of local softness can be exploited for a theoretical analysis and understanding of the characteristic chemical events of the molecules under consideration. The profiles of the Fukui functions and local softness parameters of the two molecules seem to reflect and reveal their intrinsic difference in the tendency of receiving donation in the LUMO (electrophilicity) and that of backdonation from the HOMO (nucleophilicity) and the inherent difference of overall reactivity of the two molecules by a simultaneous operation of two opposing processes of charge transfer. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

20.
In order to examine competitive photoisomerization, a series of novel photochromic PtII molecules that contain both dithienylethene (DTE) and B(ppy)Mes2 units (ppy=2-phenylpyridine, Mes=mesityl) were successfully synthesized and fully structurally characterized. Their photochromic properties were examined by UV/Vis, emission and NMR spectroscopy. It was found that the DTE unit in all three compounds is the preferred photoisomerization site, exhibiting reversible photochromism with irradiation. The B(ppy)Mes2 unit does not undergo photoisomerization in these molecules, but likely enhances the photoisomerization quantum efficiency of the DTE moiety through the antenna effect. Extended irradiation with UV light leads to the rearrangement of the ring-closed isomers of DTE. TD-DFT computational studies indicate that the DTE photocyclization proceeds via a triplet pathway through an efficient energy transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号