首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Chemphyschem》2004,5(3):327-335
We report the design of supported lipid membranes attached to the surface by tailored lipopolymer tethers. A series of well‐defined lipopolymers were synthesized by means of living cationic polymerization of 2‐methyl‐2‐oxazolines. The polymers were equipped with a silane coupling group on the proximal, and lipid anchors on the distal chain ends. The length of the intermediate hydrophilic polymer tether was varied (n=14, 18, 33) to change the distance between the membrane and the substrate. Supported membranes have been prepared in two‐steps. First, a suitable lipopolymer/lipid mixture was deposited by Langmuir–Blodgett transfer, and annealed to establish the covalent coupling to the surface. On the dry lipopolymer/lipid monolayer, the upper leaflet was deposited by vesicle fusion. Optimization of both preparation steps resulted in the formation of stable and defect‐free membranes. Impacts of the spacer length and the lipopolymer fraction upon the lateral diffusivity of the lipids were systematically compared by fluorescence recovery after photobleaching (FRAP). First experiments on the incorporation of a large transmembrane cell receptor (integrin αIIbβ3) into the polymer‐tethered membrane suggested that the length of the polymer tether plays a crucial role in distribution of the proteins on the surface.  相似文献   

2.
Particle nucleation in the polymerization of styrene microemulsions was found to take place throughout the polymerization as indicated by measurements of the particle number as a function of conversion. A mechanism based on the nucleation in the microemulsion droplets was proposed to explain the experimental findings although homogeneous nucleation and coagulation during polymerization were not completely ruled out. A thermodynamic model was developed to simulate the partitioning of monomer in the different phases during polymerization. The model predicts that the oil cores of the microemulsion droplets were depleted early in the polymerization (4% conversion). Due to the high monomer/polymer swelling ratio of the polymer particles, most of the monomer resides in the polymer particles during polymerization. The termination of chain growth inside the polymer particles was attributed to the chain transfer reaction to monomer. The low n? (less than 0.5) of the microemulsion system was attributed to the fast exit of monomeric radicals.  相似文献   

3.
As an alternative to strong acid reaction media for the Friedel–Crafts acylation for a polymer‐forming reaction, a mild polyphosphoric acid (PPA) with optimized amount of phosphorous pentoxide (P2O5) has been tested for the polymerization of AB monomers 4‐(2‐phenoxyethoxy)benzoic acid and 3‐(2‐phenoxyethoxy)benzoic acid, and an AB2 monomer 3,5‐bis(2‐phenoxyethoxy)benzoic acid. The reaction progress of AB2 monomer was conveniently traced by FTIR spectroscopy monitoring aromatic ketone (C?O) stretching bands arisen from carboxylic acid groups at the chain ends and carbonyl groups in the backbone as a function of reaction time at 110 °C. The resultant linear and hyperbranched polymers containing flexible oxyethylene spacers, which were prone to be hydrolyzed in strong acids at elevated temperature, displayed high intrinsic viscosities. Thus, the reaction medium PPA/P2O5 mixture as an electrophilic substitution reaction was indeed benign not to depolymerize growing polymer molecules but strong enough for the direct generation of carbonium ion from carboxylic acid to promote efficient polymerization. The resultant hyperbranched poly(etherketone) (PEK) displayed the best solubility among samples. All PEKs showed good thermal stability; glass transition temperatures were in the range of 90–117 °C; 5% weight loss generally occurred at greater than 345 °C in air. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5112–5122, 2007  相似文献   

4.
Chiral polymer was synthesized by the polymerization of (R)-6,6'-bistributylstannyl-2,2'-binaphtho-20-crown-6(M-1) with 1,4-dibromo-2,3-bisbutoxy-naphthyl (M-2) by Pd(PPh3)4 catalyzed Stille coupling reaction. Both monomer and polymer were analyzed by NMR, MS, FT-IR, UV, polarimetry, DSC-TGA, CD, fluorescent spectroscopy and GPC. The major difference between monomer and polymer is that a long wavelength Cotton Effect was observed for the polymer due to its more extended conjugation in the repeating unit and a highly rigid backbone in the polymer chain. Polymer has strong blue fluorescence due to the efficient energy migration from the extended π-electronic structure of the repeating unit of the polymer to the chiral binaphthyl core and is expected to have potential application in the materials of fluorescent sensors and chiral chromatographic packing for resolution ofracemic amino acid.  相似文献   

5.
Novel types of dual‐functional surface‐attached polymer brushes were developed by interface‐mediated reversible addition‐fragmentation chain transfer (RAFT) polymerization of 6‐azidohexylmethacrylate using the surface‐immobilized RAFT agent and the free initiator. The interface‐mediated RAFT polymerization produced silicon substrate coated with dual‐functional (azido groups from monomer and carboxylic acid groups from RAFT agent) poly(6‐azidohexylmethacrylate) [poly (AHMA)] with a grafting density as high as 0.59 chains/nm2. Dual‐functional polymer brushes can represent an attractive chemical platform to deliberately introduce other molecular units at specific sites. The azido groups of the poly(AHMA) brushes can be modified with alkyl groups via click reaction, known for their DNA hybridization, while the carboxylic acid end groups can be reacted with amine groups via amide reaction, known for their antifouling properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1696–1706  相似文献   

6.
Chiral polymer was synthesized by the polymerization of (R)-6,6'-bistributylstannyl-2,2'-binaphtho-20-crown-6 (M-1) with 1,4-dibromo-2,3-bisbutoxy-naphthyl (M-2) by Pd(PPh3)4 catalyzed Stille coupling reaction. Both monomer and polymer were analyzed by NMR, MS, FT-IR, UV, polarimetry, DSC-TGA, CD, fluorescent spectroscopy and GPC. The major difference between monomer and polymer is that a long wavelength Cotton Effect was observed for the polymer due to its more extended conjugation in the repeating unit and a highly rigid backbone in the polymer chain. Polymer has strong blue fluorescence due to the efficient energy migration from the extended n-electronic structure of the repeating unit of the polymer to the chiral binaphthyl core and is expected to have potential application in the materials of fluorescent sensors and chiral chromatographic packing for resolution of racemic amino acid.  相似文献   

7.
A new AB-type monomer, N,N-bistrimethylsilylated p-aminobenz-aldehyde diethyl acetal was prepared via three steps from p-bromoaniline as a starting material. The two-stage polymerization involving a soluble precursor polymer process gave a poly(p-phenylenevinylene)-type polyazomethine, poly(1,4-phenylene-nitrilomethylidyne). The first stage of polymerization was carried out in tetrahydrofuran or hexamethylphosphoramide containing water at room temperature. In the second stage, the polymer was thermally converted into the final polyazomethine by heating over 300°C to form a free-standing film. The film was reddish brown and insoluble in common organic solvents. The investigation of the first-stage products by means of MALDI-TOF mass spectroscopy proved the oligomers with 4-11 repeating units per molecule. From the 1H-NMR analysis of the model reaction, the polymerization mechanism was found to be a stepwise polycondensation of 4-diethoxymethylaniline which was formed by removal of two silyl groups of the monomer.  相似文献   

8.
Chiral polymer was synthesized by the polymerization of (R)-6,6'-bistributylstannyl-2,2'-binaphtho-20-crown-6 (M-1) with 1,4-dibromo-2,3-bisbutoxy-naphthyl (M-2) by Pd(PPhs)4 catalyzed Stille coupling reaction. Both monomer and polymer were analyzed by NMR, MS, FT-IR, UV, polarimetry, DSC-TGA, CD, fluorescent spectroscopy and GPC. The major difference between monomer and polymer is that a long wavelength Cotton Effect was observed for the polymer due to its more extended conjugation in the repeating unit and a highly rigid backbone in the polymer chain. Polymer has strong blue fluorescence due to the efficient energy migration from the extended n-electronic structure of the repeating unit of the polymer to the chiral binaphthyl core and is expected to have potential application in the materials of fluorescent sensors and chiral chromatographic packing for resolution ofracemic amino acid.  相似文献   

9.
In this paper, the use of in situ Raman spectroscopy together with a novel multivariate data analysis method, band‐target entropy minimization (BTEM), is discussed to monitor the solution polymerization of methacrylamide in aqueous medium. Although FTIR spectroscopy is a more popular spectroscopic technique for polymer characterization and in situ polymerization monitoring, Raman spectroscopy is selected over FTIR in the current study. This is because water has very strong and broad infrared absorption bands and thus masks most of the other infrared signals contributed from monomer and polymer. On the contrary, water has very weak Raman scattering and thus it does not interfere the other Raman signals. The polymerization was initiated with potassium persulfate (KPS). A series of experiments were carried out varying initial monomer concentration, initial KPS concentration, and polymerization temperature. In situ Raman spectroscopy was used to monitor the polymerizing mixture and measure the compositions. The collected reaction spectra were subjected to BTEM to elucidate the pure component spectra, and then determine the conversion of monomer. The conversion data was then used to obtain kinetic parameters for the polymerization. The rate of consumption of monomers was found to follow the expression R = keff [I]0.55[M]1.41. The activation energy of the system was estimated at 121 kJ/mol. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5697–5704, 2007  相似文献   

10.
Cyclohexylcarbodiimidoethyl methacrylate (CCEMA) and t‐butylcarbodiimidoethyl methacrylate (t‐BCEMA) were prepared in a two‐step synthesis. These monomers were then used to prepare carbodiimide‐functionalized PBMA and PEHMA latex particles, employing two‐stage emulsion polymerization, with the carbodiimide–methacrylate monomers being introduced only in the second stage under monomer‐starved conditions. During emulsion polymerization, the carbodiimide moiety ( NCN ) was found to be unstable at pH 4, but stable when the pH of the dispersion was increased to 8, using NaHCO3 as the buffer. Survival of  NCN group against hydrolysis during the polymerization, and during storage in the dispersion, was enhanced by using EHMA as the comonomer (more hydrophobic) and the t‐butyl carbodiimide derivative. The t‐butyl group provides more steric hindrance to the hydrolysis reaction. A decrease in the reaction temperature from 80°C to 60°C was also found to increase the extent of  NCN group incorporation during emulsion polymerization. Under ideal conditions, more than 98% of the  NCN groups in the monomer feed are successfully incorporated into the latex. When these latex particles are mixed with a  COOH containing latex and allowed to dry, polymer diffusion leading to crosslinking occurs. Films annealed at 60°C reach a gel content of 60% in 10 h. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 855–869, 2000  相似文献   

11.
Aromatic polyoxadiazole derivatives containing 9,9′‐dioctylfluorene were successfully synthesized via the Suzuki coupling reaction. The oxadiazole moiety in the polymer backbone was linked with the bis(hydroxyphenyl) group in its 2‐position to exhibit a large Stokes shift in the emission spectrum due to the excited‐state intramolecular proton transfer. To prepare the polymer via the Suzuki cross‐coupling reaction, the hydroxyl group in the monomer was protected with the t‐butoxycarbonyl group before polymerization and removed after polymerization to a desirable extent. The polymer with the free hydroxyl group showed a considerable sensitivity for nitroaromatic compounds, exhibiting fluorescence quenching in a chloroform solution. The interaction between the electron‐donating OH group and electron‐deficient nitroaromatic compounds seemed to play a decisive role in fluorescence quenching. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2059–2068, 2006  相似文献   

12.
Frontal polymerization (FP) of poly(ethylene glycol) diacrylate (PEGDA) was carried out using benzoyl peroxide (BPO) as radical initiator. In addition, a pyrene containing monomer, 1‐pyrenebutyl acrylate (PyBuAc), was incorporated as a fluorescent probe in order to obtain luminescent materials with different chromophore contents. The resulting polymers were characterized by FT‐IR spectroscopy in the solid state and their thermal properties were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the optical properties of these materials were studied by absorption and fluorescence spectroscopy. The maximum amount of the incorporated pyrene‐containing monomer into the polymer matrix was limited to 1 wt % by the polymerization process. The obtained labeled polymers poly(PEGDA‐co‐PyBuAc) exhibited a broad absorption band at 345 nm. The fluorescence spectra of these polymers exhibited mainly “monomer emission” so that no excimer emission was observed. It is possible to tune the color of the emitted light by varying the pyrene content in the samples. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2890–2897  相似文献   

13.
The synthesis of a new A2X‐type difluoride monomer, N‐2‐pyridyl‐4′,4″‐bis‐(4‐fluorobenzenesulfonyl)‐o‐terphenyl‐3,6‐dimethyl‐4,5‐dicarboxylic imide ( 3 ), is described. The monomer 3 was incorporated into a series of copoly(aryl ether sulfone)s by polymerization of 4,4′‐isopropylidenediphenol and 4,4′‐difluorophenylsulfone. The incorporation of monomer 3 had an observable effect on both the glass‐transition temperature of poly(aryl ether sulfone)s and the tendency for macrocyclic oligomers to form during polymerization. Replacement of the pyridyl imide group via a transimidization reaction with propargyl amine proceeded quantitatively and without polymer degradation. The acetylene containing copoly(aryl ether sulfone) could be crosslinked by simple thermal treatment, resulting in an increase in the glass‐transition temperature and solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 9–17, 2000  相似文献   

14.
The series of 9‐acridyl derivatives of aromatic amines have been investigated as fluorescent probes for monitoring the progress of free‐radical polymerization. This study on the changes in the fluorescence intensity and spectroscopic shift of specific compounds was carried out during thermally initiated polymerization of methyl methacrylate and photoinitiated polymerization of 2‐ethyl‐2‐(hydroxymethyl)‐1,3‐propanediol triacrylate‐1‐methyl‐2‐pyrrolidonone mixture. The purpose of this investigation was to find a relationship between the changes in the shape and intensity of fluorescent probes and the degree of monomer conversion into a polymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3481–3488, 2002  相似文献   

15.
设计合成了新型含有荧光基团的α-氰基丙烯酸酯单体,并与其它α-氰基丙烯酸酯单体共聚,得到产生荧光的聚氰基丙烯酸酯材料.将其包埋在小鼠背部肌肉层,可获得良好的荧光成像效果.通过对荧光强度的监测,初步研究了聚氰基丙烯酸酯材料中的侧链酯基在小鼠体内的降解情况.单体合成是以蒽合氰基丙烯酸和4,4'-二甲氧基三苯基-氨基己醇为原料,得到蒽合氰基丙烯酸(4,4'-二甲氧基三苯基-氨基己醇)酯,脱保护后再将异硫氰酸荧光素以化学键合的方式标记在末端氨基上,脱蒽还原烯双键后,得到可用于荧光标记的α-氰基丙烯酸(异硫氰酸荧光素-氨基己醇)酯单体.反应中间体及单体结构采用核磁共振氢谱和质谱进行表征.该单体及其高聚物均可在激发光(488 nm)和发射光(525 nm)条件下观察到明显荧光.  相似文献   

16.
In situ Fourier transform near infrared (FTNIR) spectroscopy was successfully used to monitor monomer conversion during copper mediated living radical polymerization with N‐(n‐propyl)‐2‐pyridylmethanimine as a ligand. The conversion of vinyl protons in methacrylic monomers (methyl methacrylate, butyl methacrylate, and N‐hydroxysuccinimide methacrylate) to methylene protons in the polymer was monitored with an inert fiber‐optic probe. The monitoring of a poly(butyl methacrylate‐b‐methyl methacrylate‐b‐butyl methacrylate) triblock copolymer has also been reported with difunctional poly(methyl methacrylate) as a macroinitiator. In all cases FTNIR results correlated excellently with those obtained by 1H NMR. On‐line near infrared (NIR) measurement was found to be more accurate because it provided many more data points and avoided sampling during the polymerization reaction. It also allowed the determination of kinetic parameters with, for example, the calculation of an apparent first‐order rate constant. All the results suggest that FTNIR spectroscopy is a valuable tool to assess kinetic data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4933–4940, 2004  相似文献   

17.
Chemical polymerization of acrylamide at room temperature was examined by using thioglycolic acid-cerium (IV) sulfate and thioglycolic acid-KMnO4 redox systems in acid aqueous medium. Water soluble polyacrylamides containing thioglycolic acid end groups were synthesized. The effects of the molar ratio of acrylamide to Ce(IV) n AAm /n Ce(IV) , the polymerization time, the temperature, the monomer concentration, the molar ratio of cerium (IV) sulfate to thioglycolic acid and the concentration of sulfuric acid on the yield and molecular weight of polymer were investigated. Lower molar ratios of acrylamide/Ce(IV) at constant monomer concentration resulted in an increase in the yield but a decrease in molecular weight of polymer. The increase of reaction temperature from 20 to 70°C resulted in a decrease in the yield but generally resulted in a constant value for the molecular weight of polymer. With increasing polymerization time, the yield and molecular weight of polymer did not change substantially. Ce(IV) and Mn(VII) ions are reduced to Ce(III) and Mn(II) ions respectively in the polymerization reaction. The existence of Ce(III) ion bound to polymer was investigated by UV-visible spectrophotometry and fluoresce measurements. The amount of Mn(II) incorporated into the polymer was determined using graphite furnace atomic absorption spectrometry. The mechanism of this phenomenon is discussed.  相似文献   

18.
Abstract— Fluorescence recovery after photobleaching (FRAP) measurements on air-saturated aqueous solutions of fluorescein made viscous with glycerol or sucrose revealed a rapid component of fluorescence recovery with exponential time constants of 30-120 μs at viscosities of 15-300 cP. The rapid recovery process was not related to fluorophore translational diffusion and was insensitive to fluorophore concentration and the additive used to increase solution viscosity. At constant viscosity, the rate of reversible photobleaching recovery increased 2.5-fold in an O2- vs N2-saturated solution. The relative efficiency of reversible-to-irreversible photobleaching decreased with increasing photobleaching time and/or beam intensity. Reversible photobleaching was also detected for conjugates of fluorescein with dextrans and proteins in viscous media. In screening triplet state quenchers that might influence the reversible recovery, it was found that tryptophan enhanced the rate of reversible photobleaching recovery (two-fold increase at 8 m M ) and quenched the fluorescein singlet state (Stern-Volmer constant, 12 M −1). Analysis of fluorescein lifetimes and photobleaching parameters for a series of fluorescein-labeled proteins with different numbers of tryptophans were also carried out. The results provide evidence for an oxygen-dependent, reversible photobleaching mechanism for the fluorescein chromophore involving triplet state relaxation. The identification of reversible fluorescein photobleaching has important implications for FRAP measurements of rapid solute diffusion in biological systems.  相似文献   

19.
The monomer transfer constant, Cm can be determined from the chain length distribution (CLD) under conditions in which the monomer transfer reaction rate is much larger than the other chain termination processes. Such reaction conditions are feasible in emulsion polymerization where bimolecular termination reactions are relatively less important. We conducted theoretical investigations aimed at finding the necessary reaction conditions to apply the CLD method to emulsion polymerization. The number of polymer chains per polymer particle needs to be large enough in order to keep the effects of unknown chain lengths to a minimum, i.e., the unknown chains formed during the nucleation period and those which stop growing when the polymerization is stopped for sampling. In emulsion polymerization, the polymer concentration at the polymerization locus is higher than the corresponding bulk polymerization as long as monomer droplets exist, and the polymer transfer reaction may possess significant effects under conditions where monomer transfer reactions are important. The Monte Carlo (MC) simulation results have shown that although the CLD profile becomes broader due to the polymer transfer reactions, they do not significantly change the slope, from which Cm is determined. According to the present simulation results, the CLD method is considered applicable even when the polymer transfer reaction cannot be neglected. The MC simulation method can be used to find the experimental conditions where the CLD method is applicable.  相似文献   

20.
Polymerization of multifunctional acrylate monomers generates crosslinked polymers that are noted for their mechanical strength, thermal stability, and chemical resistance. A common reactive diluent to photopolymerizable formulations is N‐vinyl pyrrolidone (NVP), which is known to reduce the inhibition of free radical photopolymerization by atmospheric oxygen. In this work, the copolymerization behavior of NVP was examined in acrylate monomers with two to five functional groups. At concentrations as low as 2 wt %, NVP increases the polymerization rate in copolymerization with multifunctional acrylate monomer. The relative rate enhancement associated with adding NVP increases dramatically as the number of acrylate double bonds changes from two to five. The influence of NVP on polymerization kinetics is related to synergistic cross‐propagation between NVP and acrylate monomer, which becomes increasingly favorable with diffusion limitations. This synergy extends bimolecular termination into higher double bond conversion through reaction diffusion controlled termination. Copolymerizing concentrations of 5–30 DB% NVP with diacrylate or pentaacrylate monomer also increases Young's modulus and the glass transition temperature (Tg) in comparison to neat acrylate polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4062–4073, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号