首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction mechanisms on reduction of tertiary carboxamides by diisobutylaluminum hydride (DIBAL) and sodium hydride (NaH)‐sodium iodide (NaI) composite were elucidated by the computational and experimental approaches. Reduction of N,N‐dimethyl carboxamides with DIBAL provides the corresponding amines, whereas that with the NaH?NaI composite exclusively forms aldehyde even at high reaction temperature. DFT calculations revealed that dimeric structural nature of DIBAL and Lewis acidity on its Al center play crucial role to decompose the tetrahedral anionic carbinol amine intermediate through C?O bond cleavage. On the other hand, in the reduction with the NaH?NaI composite, the resulting tetrahedral anionic carbinol amine intermediate could be kept stable, thus providing aldehydes as a sole product by the aqueous workup  相似文献   

2.
 基于重质油在酸性Y分子筛催化剂上的反应,区分了负氢离子转移反应和氢转移反应,认为负氢离子转移和氢转移是重质油催化反应过程中的两个不同过程. 确定了大庆减压蜡油在酸性Y分子筛催化剂上反应时,负氢离子转移反应主要发生在反应前期(转化率为5%~10%)至反应中后期(转化率为60%~70%)的转化深度区间,而氢转移反应主要发生在反应后期(转化率>60%~70%). 负氢离子转移反应基本不产生焦炭,焦炭主要通过氢转移反应产生. Y分子筛上发生的主要是汽油烯烃和环烷烃之间的氢转移反应.  相似文献   

3.
Hydride transfer plays a crucial role in a wide range of biological systems. However, its mode of action (concerted or stepwise) is still under debate. Light‐dependent NADPH: protochlorophyllide oxidoreductase (POR) catalyzes the stereospecific trans addition of a hydride anion and a proton across the C17?C18 double bond of protochlorophyllide. Time‐resolved absorption and emission spectroscopy were used to investigate the hydride transfer mechanism in POR. Apart from excited states of protochlorophyllide, three discrete intermediates were resolved, consistent with a stepwise mechanism that involves an initial electron transfer from NADPH. A subsequent proton‐coupled electron transfer followed by a proton transfer yield distinct different intermediates for wild type and the C226S variant, that is, initial hydride attaches to either C17 or C18, but ends in the same chlorophyllide stereoisomer. This work provides the first evidence of a stepwise hydride transfer in a biological system.  相似文献   

4.
3-羰基吡唑质子转移过程的理论研究   总被引:1,自引:1,他引:1  
陈媛丽  李宝宗  国永敏 《化学研究》2008,19(1):43-46,51
采用密度泛函B3LYP/6—311G^**方法,对3-羰基吡唑几何构型进行了全自由度优化,获得了它们的几何结构和电子结构.计算并考察了3-羰基吡唑的两种构象即syn和anti构象的稳定性以及3-羰基吡唑进行结构互变的质子转移过程的四种可能途径:(a)分子内质子转移;(b)水助质子转移;(C)同种二聚体双质子转移;(d)异种二聚体双质子转移.计算结果表明3-羰基吡唑的syn构象中N2-H型的稳定性大于N1-H型,进行质子转移时途径(C)所需要的活化能最小(52.78kJ/mol),途径(a)所需要的活化能最大(200.59kJ/mol);3,羰基吡唑的。anti构象中N1-H型的稳定性大于N2-H型,进行质子转移时途径(d)所需要的活化能最小(61.09kJ/mol),途径(a)所需要的活化能最大(204.15kJ/mol).  相似文献   

5.
Excited-state intramolecular proton transfer(ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-phenol(DDOP), 4-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-[1,1?-biphenyl]-3-ol(DDOP-C_6H_5) and 4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3-hydroxy-benzonitrile(DDOP-CN), have been systematically explored by density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods. Two stable configurations(enol and keto forms) are found in the ground states(S_0) for all the compounds while the enol form only exists in the first excited states(S_1) for the compound modified with electron donating group(-C_6H_5). In addition, the calculated absorption and emission spectra of the compounds are in good agreements with the experiments. Infrared vibrational spectra at the hydrogen bond groups demonstrate that the intramolecular hydrogen bond O(1)-H(2)···N(3) in DDOP-C_6H_5 is strengthened in the S_1 states, while the frontier molecular orbitals further reveal that the ESIPT reactions are more likely to occur in the S_1 states for all the compounds. Besides, the proton transfer potential energy curves show that the enol forms can barely convert into keto forms in the S_0 states because of the high energy barriers. Meanwhile, intramolecular proton transfer of all the compounds could occur in S_1 states. The ESIPT reactions of the ortho-hydroxylated oxazolines are barrierless processes for unsubstituted DDOP and electron withdrawing substituted DDOP-CN, while the electron donating substituted DDOP-C_6H_5 has a small barrier, so the electron donating is unfavorable to the ESIPT reactions of ortho-hydroxylated oxazolines.  相似文献   

6.
7.
H + but not H ? : The reduction reaction of protochlorophyllide catalyzed by protochlorophyllide oxidoreductase features solvent‐slaved motions that control the proton‐ but not the hydride‐tunneling mechanism. These motions imply a long‐range dynamic network from the solvent to the enzyme active site that facilitate proton transfer (see picture, left). Motions for hydride transfer are more localized and are not slaved by the solvent (see picture, right).

  相似文献   


8.
Transforming polyolefin waste into liquid alkanes through tandem cracking-alkylation reactions catalyzed by Lewis-acid chlorides offers an efficient route for single-step plastic upcycling. Lewis acids in dichloromethane establish a polar environment that stabilizes carbenium ion intermediates and catalyzes hydride transfer, enabling breaking of polyethylene C−C bonds and forming C−C bonds in alkylation. Here, we show that efficient and selective deconstruction of low-density polyethylene (LDPE) to liquid alkanes is achieved with anhydrous aluminum chloride (AlCl3) and gallium chloride (GaCl3). Already at 60 °C, complete LDPE conversion was achieved, while maintaining the selectivity for gasoline-range liquid alkanes over 70 %. AlCl3 showed an exceptional conversion rate of 5000 , surpassing other Lewis acid catalysts by two orders of magnitude. Through kinetic and mechanistic studies, we show that the rates of LDPE conversion do not correlate directly with the intrinsic strength of the Lewis acids or steric constraints that may limit the polymer to access the Lewis acid sites. Instead, the rates for the tandem processes of cracking and alkylation are primarily governed by the rates of initiation of carbenium ions and the subsequent intermolecular hydride transfer. Both jointly control the relative rates of cracking and alkylation, thereby determining the overall conversion and selectivity.  相似文献   

9.
The effects of substituent type and position on the proton transfer reaction of 3-hydroxytropolone(3-OHTRN) have been investigated theoretically by using density functional theory at the level of B3LYP/ 6-31+G** method. The influence of solvent on the proton transfer reactions of substituted 3-OHTRN has been examined using the self-consistent isodensity polarized continuum model(SCI-PCM) in water. As a result, while the proton transfer reaction is kinetically the easiest by substitution on position 3 of-NH2 group in the gas phase, it is kinetically the easiest by substitution on position 5 of the same group in water. In addition, these reactions are either kinetically or thermodynamically easier in the gas phase than that in water, except the reaction of structure with-NH2 group at position 6.  相似文献   

10.
孟祥军 《化学学报》2011,69(11):1273-1279
水分子与甘氨酸作用会导致甘氨酸羧基上的质子迁移到氨基上,质子可以通过水分子链进行迁移。采用密度泛函理论的B3LYP/6-31++g**方法研究了水分子链的逐渐增长(1~5个水分子)对质子迁移的影响,发现水分子数少于5时,质子迁移一步完成;水分子数为5时,质子迁移经由一个中间体,需两步完成;水分子链的增长使质子迁移反应的自由能越来越低,但是反应的活化能越来越高,即在热力学上有利于质子迁移反应,在动力学上不利于质子迁移反应。  相似文献   

11.
Although the mechanism for the transformation of carbon dioxide to formate with copper hydride is well understood, it is not clear how formic acid is ultimately released. Herein, we show how formic acid is formed in the decomposition of the copper formate clusters Cu(II)(HCOO)3 and Cu(II)2(HCOO)5. Infrared irradiation resonant with the antisymmetric C−O stretching mode activates the cluster, resulting in the release of formic acid and carbon dioxide. For the binary cluster, electronic structure calculations indicate that CO2 is eliminated first, through hydride transfer from formate to copper. Formic acid is released via proton-coupled electron transfer (PCET) to a second formate ligand, evidenced by close to zero partial charge and spin density at the hydrogen atom in the transition state. Concomitantly, the two copper centers are reduced from Cu(II) to Cu(I). Depending on the detailed situation, either PCET or hydrogen atom transfer (HAT) takes place.  相似文献   

12.
13.
The photoexcitation of a triangular silver(I) hydride complex, [Ag33-H)(μ2-dcpm)3](PF6)2 ([ P ](PF6)2, dcpm=bis(dicyclohexylphosphino)methane), designed with “UV-silent” bis-phosphine ligands, provokes hydride-to-Ag3 single and double electron transfer. The nature of the electronic transitions has been authenticated by absorption and photodissociation spectroscopy in parallel with high-level quantum-chemical computations utilizing the GW method and Bethe–Salpeter equation (GW-BSE). Specific photofragments of mass-selected [ P ]2+ ions testify to charge transfer and competing pathways resulting from the unique [Ag33-H)]2+ scaffold. This structural motif of [ P ](PF6)2 has been unequivocally verified by 1H NMR spectroscopy in concert with DFT and X-ray diffraction structural analysis, which revealed short equilateral Ag–Ag distances (dAgAg=3.08 Å) within the range of argentophilic interactions. The reduced radical cation [ P ] . + exhibits strong oxophilicity, forming [ P +O2] .+ ,which is a model intermediate for silver oxidation catalysis.  相似文献   

14.
Known for over a century, reactions that involve intramolecular hydride‐transfer events have experienced a recent resurgence. Undoubtedly responsible for the increased interest in this research area is the realization that hydride shifts represent an attractive avenue for C? H bond functionalization. The redox‐neutral nature of these complexity‐enhancing transformations makes them ideal for sustainable reaction development. This Review summarizes recent progress in this field while highlighting key historical contributions.  相似文献   

15.
We report the synthesis, X‐ray structure and functional biomimetic activity of a model complex of mono‐iron hydrogenase (Hmd). To achieve the desired biomimetic fac‐CNS(thiolate) ligation motif, an anthracene framework is used to provide the requisite donors in a single chelate. A bulky aryl thiolate (ortho dimethylphenyl) is included to achieve mononuclearity. In addition to exhibiting structural (X‐ray) and spectroscopic (NMR, IR) similarity to the enzyme, the complex is competent for H2 activation (heterolysis) and hydride transfer to a model substrate—mimicking the functional behavior of the enzyme in a biomimetic CNS coordination sphere for the first time.  相似文献   

16.
用密度泛函理论(DFT)和二级微扰理论(MP2)研究了带不同质子供体的2-苯基苯并三唑衍生物: 2-(2-羟苯基)苯并三唑(H-TIN), 2-(2-氨苯基)苯并三唑(APyBT)和2-(2-巯苯基)苯并三唑(MPyBT)的激发态分子内质子转移(ESIPT)性质以及它们作为紫外光吸收剂的光物理机制. 结果表明, 在基态时三个化合物的最稳定异构体是均存在分子内氢键的正常构型N, 而互变异构体T和其扭曲构型Ttwisted都是不稳定的. 激发态势能曲线表明H-TIN和APyBT的ESIPT分别需要克服约7.06和20.7 kJ/mol的能垒, 而MPyBT的ESIPT无需能垒|同时结合分子轨道, 电荷差分密度三维立体图的分析结果表明三个化合物都能发生ESIPT, 并且伴随有扭曲分子内电荷转移, 这些原因均表明它们都具有好的紫外光稳定作用.  相似文献   

17.
通过傅里叶变换红外光谱(FTIR)、傅里叶变换拉曼(FT-Raman)和488 nm拉曼光谱,结合密度泛函理论(DFT)计算研究了2-氨基苯并噻唑(ABT)在晶态和溶剂中的二聚体结构,并解释了质子性溶剂中ABT二聚体与溶剂分子间的氢键作用.电子光谱实验揭示了ABT二聚体的光物理和光化学反应;紫外吸收和荧光发射光谱结果表明,溶剂、激发波长和pH值对ABT二聚件激发态衰变具有调控作用;含时密度泛函理论(TD-DFT)解释了ABT二聚体双荧光现象,提出了高激发态的质子转移机理.  相似文献   

18.
Co‐conversion of alkane with another reactant over zeolite catalysts has emerged as a new approach to the long‐standing challenge of alkane transformation. With the aid of solid‐state NMR spectroscopy and GC‐MS analysis, it was found that the co‐conversion of propane and methanol can be readily initiated by hydride transfer at temperatures of ≥449 K over the acidic zeolite H‐ZSM‐5. The formation of 13C‐labeled methane and singly 13C‐labeled n‐butanes in selective labeling experiments provided the first evidence for the initial hydride transfer from propane to surface methoxy intermediates. The results not only provide new insight into carbocation chemistry of solid acids, but also shed light on the low‐temperature transformation of alkanes for industrial applications.  相似文献   

19.
单氢钌配合物与水和2,2,2-三氟乙醇的作用机理   总被引:1,自引:0,他引:1  
利用原位1H和31P NMR对单氢钌配合物TpRu(PPh3)(CH3CN)H [Tp=hydrotris(pyrazolyl)borate]与H2O和酸性HOCH2CF3的反应进行了研究, 结果显示相应的反应产物分别是TpRu(PPh3)(CH3CN)(OH) 和TpRu(PPh3)(CH3CN)(OCH2CF3). 观察到反应过程中Ru-H…HOH和Ru-H…HOCH2CF3分子间的氢键作用. 提出了生成TpRu(PPh3)(CH3CN)(OH)和TpRu(PPh3)(CH3CN)(OCH2CF3)的不同作用机理. 在水存在下, TpRu(PPh3)(CH3CN)H 与H2O反应, 经过中间体TpRu(PPh3)(H2O)H和TpRu(PPh3)(OH)(η2-H2)生成产物TpRu(PPh3)(CH3CN)(OH). 而TpRu(PPh3)(CH3CN)H与酸性HOCH2CF3反应时, 单氢配体被质子化形成中间体[TpRu(PPh3)(CH3CN)- (η2-H2)](OCH2CF3), 进而转变成产物TpRu(PPh3)(CH3CN)(OCH2CF3). TpRu(PPh3)(CH3CN)(OCH2CF3)与H2作用, 经中间体TpRu(PPh3)(HOCH2CF3)H生成TpRu(PPh3)(η2-H2)H.  相似文献   

20.
The excited state intramolecular proton transfer (ESIPT) processes in 3‐methylsalicyclic acid (3‐MeSA) and 3‐methoxysalicyclic acid (3‐MeOSA) have been investigated in cyclohexane medium by emission spectroscopic techniques. The ESIPT process was characterized in 3‐MeSA from the large Stokes fluorescent band (455 nm), but it was suppressed by 3‐MeOSA in cyclohexane. The ESIPT process was found to be accelerated both in 3‐MeSA and 3‐MeOSA in the presence of a hydrogen bond accepting agent, triethylamine (TEA). Further, theoretical calculations were carried out at the ground and excited states to complement the experimental evidences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号