首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, we consider a reaction–diffusion system of the population dynamics of two predators and one prey with prey-taxis and competition. We prove the global existence and uniform boundedness of the positive classical solutions for the fully parabolic system over a bounded domain with Neumann boundary conditions. Furthermore, we establish the asymptotic behavior of solutions by constructing some appropriate Lyapunov functionals. Our results not only generalize the previously known one, but also present some new conclusions.  相似文献   

3.
4.
A three dimensional ecoepidemiological model consisting of susceptible prey, infected prey and predator is proposed and analysed in the present work. The parameter delay is introduced in the model system for considering the time taken by a susceptible prey to become infected. Mathematically we analyze the dynamics of the system such as, boundedness of the solutions, existence of non-negative equilibria, local and global stability of interior equilibrium point. Next we choose delay as a bifurcation parameter to examine the existence of the Hopf bifurcation of the system around its interior equilibrium. Moreover we use the normal form method and center manifold theorem to investigate the direction of the Hopf bifurcation and stability of the bifurcating limit cycle. Some numerical simulations are carried out to support the analytical results.  相似文献   

5.
We study the effect of the degree of habitat complexity and gestation delay on the stability of a predator–prey model. It is observed that there is stability switches, and Hopf bifurcation occurs when the delay crosses some critical value. By applying the normal form theory and the center manifold theorem, the explicit formulae which determine the stability and direction of the bifurcating periodic solutions are determined. The qualitative dynamical behavior of the model system is verified with the published data of Paramecium aurelia (prey) and Didinium nasutum (predator) interaction. It is observed that the quantitative level of abundance of system populations depends crucially on the delay parameter if the gestation period exceeds some critical value. However, the fluctuations in the population levels can be controlled completely by increasing the degree of habitat complexity.  相似文献   

6.
《Applied Mathematical Modelling》2014,38(21-22):5022-5032
The paper explores the impacts of cross-diffusion on the formation of spatial patterns in a ratio-dependent predator–prey system with zero-flux boundary conditions. Our results show that under certain conditions, cross-diffusion can trigger the emergence of spatial patterns which is however impossible under the same conditions when cross-diffusion is absent. We give a rigorous proof that the model has at least one spatially heterogenous steady state by means of the Leray–Schauder degree theory. In addition, numerical simulations are performed to visualize the complex spatial patterns.  相似文献   

7.
A two-species stochastic non-autonomous predator–prey model is investigated. Sufficient criteria for extinction, non-persistence in the mean and weak persistence in the mean are established. The critical value between persistence and extinction is obtained for each species in many cases. It is also shown that the system is globally asymptotically stable under some simple conditions. Some numerical simulations are introduced to illustrate the main results.  相似文献   

8.
A diffusive predator–prey system with Ivlev-type functional response subject to Neumann boundary conditions is considered. Hopf and steady-state bifurcation analysis are carried out in detail. First, the stability of the positive equilibrium and the existence of spatially homogeneous and inhomogeneous periodic solutions are investigated by analysing the distribution of the eigenvalues. The direction and stability of Hopf bifurcation are determined by the normal form theory and the centre manifold reduction for partial functional differential equations and then steady-state bifurcation is studied. Finally, some numerical simulations are carried out for illustrating the theoretical results.  相似文献   

9.
In this article, a predator–prey model of Beddington–DeAngelis type with discrete delay is proposed and analyzed. The essential mathematical features of the proposed model are investigated in terms of local, global analysis and bifurcation theory. By analyzing the associated characteristic equation, it is found that the Hopf bifurcation occurs when the delay parameter τ crosses some critical values. In this article, the classical Bazykin’s model is modified with Beddington–DeAngelis functional response. The parametric space under which the system enters into Hopf bifurcation for both delay and non-delay cases are investigated. Global stability results are obtained by constructing suitable Lyapunov functions for both the cases. We also derive the explicit formulae for determining the stability, direction and other properties of bifurcating periodic solutions by using normal form and central manifold theory. Our analytical findings are supported by numerical simulations. Biological implication of the analytical findings are discussed in the conclusion section.  相似文献   

10.
A predator–prey system with group defense and impulsive control strategy is established. By using Floquet theorem and small amplitude perturbation skills, a locally asymptotically stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value. Otherwise, if the impulsive period is larger than the critical value, the system is permanent. By using bifurcation theory, we show the existence and stability of positive periodic solution when the pest-eradication lost its stability. Further, numerical examples show that the system considered has more complicated dynamics, such as: (1) quasi-periodic oscillating, (2) period-doubling bifurcation, (3) period-halving bifurcation, (4) non-unique dynamics (meaning that several attractors coexist), (5) attractor crisis, etc. Finally, the biological implications of the results and the impulsive control strategy are discussed.  相似文献   

11.
In this paper, we develop a theoretical framework about spatial patterns in a three-species predator–prey–mutualist system with cross-diffusion. We concentrate on three aspects of Turing pattern formation: (1) what conditions enable the occurrence of Turing patterns? (2) what are the underlying mechanisms? (3) what are the corresponding configurations? For the first two questions, by use of the stability analysis for the positive uniform solution and the Leray–Schauder degree theory, we prove that under some conditions, the system admits at least a nonhomogeneous stationary solution. For the third question, we carry out numerical simulations for a Turing pattern, and we show that the configurations of Turing pattern are stable spotted patterns, which resemble a real ecosystem.  相似文献   

12.
13.
Stochastically asymptotic stability in the large of a predator–prey system with Beddington–DeAngelis functional response with stochastic perturbation is considered. The result shows that if the positive equilibrium of the deterministic system is globally stable, then the stochastic model will preserve this nice property provided the noise is sufficiently small. Some simulation figures are introduced to support the analytical findings.  相似文献   

14.
Establishing and researching a population dynamical model based on the differential equation is of great significance. In this paper, a predator–prey system with inducible defense and disease in the prey is built from biological evolution and Eco-epidemiology. The effect of disease on population stability in the predator–prey system with inducible defense is studied. Firstly, we verify the positivity and uniform boundedness of the solutions of the system. Then the existence and stability of the equilibria are studied. There are no more than nine equilibrium points in the system. We use a sophisticated parameter transformation to study the properties of the coexistence equilibrium points of the system. A sufficient condition is established for the existence of Hopf bifurcation. Numerical simulations are performed to make analytical studies more complete.  相似文献   

15.
16.
In this paper, a diffusive predator–prey system with a constant prey refuge and time delay subject to Neumann boundary condition is considered. Local stability and Turing instability of the positive equilibrium are studied. The effect of time delay on the model is also obtained, including locally asymptotical stability and existence of Hopf bifurcation at the positive equilibrium. And the properties of Hopf bifurcation are determined by center manifold theorem and normal form theorem of partial functional differential equations. Some numerical simulations are carried out.  相似文献   

17.
In this paper, we analyze the dynamical behaviour of a bioeconomic model system using differential algebraic equations. The system describes a prey–predator fishery with prey dispersal in a two-patch environment, one of which is a free fishing zone and other is a protected zone. It is observed that a singularity-induced bifurcation phenomenon appears when a variation of the economic interest of harvesting is taken into account. We have incorporated a state feedback controller to stabilize the model system in the case of positive economic interest. A discrete-type gestational delay of predators is incorporated, and its effect on the dynamical behaviour of the model is analyzed. The occurrence of Hopf bifurcation of the proposed model with positive economic profit is shown in the neighbourhood of the coexisting equilibrium point through considering the delay as a bifurcation parameter. Finally, some numerical simulations are given to verify the analytical results, and the system is analyzed through graphical illustrations.  相似文献   

18.
19.
This paper deals with a ratio-dependent predator–prey system with a crowding term in the prey equation, where it is assumed that the coefficient of the functional response is less than the coefficient of the intrinsic growth rates of the prey species. We demonstrate some special behaviors of solutions to the system which the coexistence states of two species can be obtained when the crowding region in the prey equation only is designed suitably. Furthermore, we demonstrate that under some conditions, the positive steady state solution of the predator–prey system with a crowding term in the prey equation is unique and stable. Our result is different from those ones of the predator–prey systems without the crowding terms.  相似文献   

20.
The dynamics of a discrete-time predator–prey system is investigated in the closed first quadrant R+2. It is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of R+2 by using a center manifold theorem and bifurcation theory. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as orbits of period 7, 14, 21, 63, 70, cascades of period-doubling bifurcation in orbits of period 2, 4, 8, quasi-periodic orbits and chaotic sets. These results show far richer dynamics of the discrete model compared with the continuous model. Specifically, we have stabilized the chaotic orbits at an unstable fixed point using the feedback control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号