首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intensifying energy crises and severe environmental issues have led to the discovery of renewable energy sources, sustainable energy conversion, and storage technologies. Photocatalysis is a green technology that converts eco-friendly solar energy into high-energy chemicals. Covalent organic frameworks (COFs) are porous materials constructed by covalent bonds that show promising potential for converting solar energy into chemicals owing to their pre-designable structures, high crystallinity, and porosity. Herein, we highlight recent progress in the synthesis of COF-based photocatalysts and their applications in water splitting, CO2 reduction, and H2O2 production. The challenges and future opportunities for the rational design of COFs for advanced photocatalysts are discussed. This Review is expected to promote further development of COFs toward photocatalysis.  相似文献   

2.
Phthalocyanines (PCs) are intriguing building blocks owing to their stability, physicochemical and catalytic properties. Although PC-based polymers have been reported before, many suffer from relatively low stability, crystallinity, and low surface areas. Utilizing a mixed-metal salt ionothermal approach, we report the synthesis of a series of metallophthalocyanine-based covalent organic frameworks (COFs) starting from 1,2,4,5-tetracyanobenzene and 2,3,6,7-tetracyanoanthracene to form the corresponding COFs named M-pPPCs and M-anPPCs, respectively. The obtained COFs followed the Irving–Williams series in their metal contents, surface areas, and pore volume and featured excellent CO2 uptake capacities up to 7.6 mmol g−1 at 273 K, 1.1 bar. We also investigated the growth of the Co-pPPC and Co-anPPC on a highly conductive carbon nanofiber and demonstrated their high catalytic activity in the electrochemical CO2 reduction, which showed Faradaic efficiencies towards CO up to 74 % at −0.64 V vs. RHE.  相似文献   

3.
Exploring novel materials deriving from earth resources to substitute for platinum(Pt) electrocatalyst to promote oxygen reduction reaction(ORR) of fuel cell cathode is very important. Herein, we have exploited two crystallographic thiophene-sulfur covalent organic frameworks(COFs), termed JUC-607 and JUC-608, as electrocatalysts that exhibited good ORR performances. These thiophene-sulfur COFs exhibited high stability, and their functional groups acting as active centers in the ORR can be precisely determined. Notably, due to a larger aperture for mass transfer and electrons transport, JUC-608 displayed a growing electrochemical performance, leading to a better ORR activity. Thus, this study will provide a new strategy for designing heteroatom-based COF materials for high-performance electrochemical catalysis.  相似文献   

4.
Metal-free covalent organic frameworks (COFs) have been employed to catalyze the oxygen reduction reaction (ORR). To achieve high activity and selectivity, various building blocks containing heteroatoms and groups linked by imine bonds were used to create catalytic COFs. However, the roles of linkages of COFs in ORR have not been investigated. In this work, the catalytic linkage engineering has been employed to modulate the catalytic behaviors. To create single catalytic sites while avoiding other possible catalytic sites, we synthesized COFs from benzene units linked by various bonds, such as imine, amide, azine, and oxazole bonds. Among these COFs, the oxazole-linkage in COFs enables to catalyze the ORR with the highest activity, which achieved a half-wave potential of 0.75 V and a limited current density of 5.5 mA cm−2. Moreover, the oxazole-linked COF achieved a conversion frequency (TOF) value of 0.0133 S−1, which were 1.9, 1.3, and 7.4-times that of azine-, amide- and imine-COFs, respectively. The theoretical calculation showed that the carbon atoms in oxazole linkages facilitated the formation of OOH* and promoted protonation of O* to form the OH*, thus advancing the catalytic activity. This work guides us on which linkages in COFs are suitable for ORR.  相似文献   

5.
于潇涵  黄伟  李彦光 《化学学报》2022,80(11):1494-1506
通过模拟自然界光合作用, 将太阳能转化为方便存储的化学能是缓解未来能源短缺和环境污染问题的理想途径之一. 二维共价有机框架材料(2D COFs)是近年来发展起来的一类新型有机半导体材料, 具有结晶度高、结构精确以及化学组分灵活可调等优势, 在光催化领域展现出巨大应用潜力, 受到了研究者们的广泛关注. 对2D COFs的可控制备以及电子结构调控方法进行了系统总结, 并重点介绍了它们在光催化水分解、CO2还原以及H2O2合成领域的最近研究进展, 讨论了材料结构和催化性能之间的关系, 最后对2D COFs在光催化应用领域存在的机遇和挑战进行了展望.  相似文献   

6.
Covalent organic frameworks (COFs), as a burgeoning class of crystalline porous materials, have made significant progress in their application to optoelectronic devices such as field-effect transistors, memristors, and photodetectors. However, the insoluble features of microcrystalline two-dimensional (2D) COF powders limit development of their thin film devices. Additionally, the exploration of spin transport properties in this category of π-conjugated skeleton materials remains vacant thus far. Herein, an imine-linked 2D Py-Np COF nanocrystalline powder was synthesized by Schiff base condensation of 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetraaniline and naphthalene-2,6-dicarbaldehyde. Then, we prepared a large-scale free-standing Py-Np COF film via a top-down strategy of chemically assisted acid exfoliation. Moreover, high-quality COF films acted as active layers were transferred onto ferromagnetic La0.67Sr0.33MnO3 (LSMO) electrodes for the first attempt to fabricate organic spin valves (OSVs) based on 2D COF materials. This COF-based OSV device with a configuration of LSMO/Py-Np COF/Co/Au demonstrated a remarkable magnetoresistance (MR) value up to −26.5 % at 30 K. Meanwhile, the MR behavior of the COF-based OSVs exhibited a highly temperature dependence and operational stability. This work highlights the enormous application prospects of 2D COFs in organic spintronics and provides a promising approach for developing electronic and spintronic devices based on acid-exfoliated COF thin films.  相似文献   

7.
Traditional MOF e-CRR, constructed from catalytic linkers, manifest a kinetic bottleneck during their multi-electron activation. Decoupling catalysis and charge transport can address such issues. Here, we build two MOF/e-CRR systems, CoPc@NU-1000 and TPP(Co)@NU-1000, by installing cobalt metalated phthalocyanine and tetraphenylporphyrin electrocatalysts within the redox active NU-1000 MOF. For CoPc@NU-1000, the e-CRR responsive CoI/0 potential is close to that of NU-1000 reduction compared to the TPP(Co)@NU-1000. Efficient charge delivery, defined by a higher diffusion (Dhop=4.1×10−12 cm2 s−1) and low charge-transport resistance ( =59.5 Ω) in CoPC@NU-1000 led FECO=80 %. In contrast, TPP(Co)@NU-1000 fared a poor FECO=24 % (Dhop=1.4×10−12 cm2 s−1 and =91.4 Ω). For such a decoupling strategy, careful choice of the host framework is critical in pairing up with the underlying electrochemical properties of the catalysts to facilitate the charge delivery for its activation.  相似文献   

8.
Photocatalytic organic transformation is an efficient, energysaving and environmentally friendly strategy for organic synthesis. The key to developing a green and economical route for photocatalytic organic synthesis lies in the construction of optimal photocatalysts. Covalent organic frameworks(COFs), a kind of porous crystalline materials with characteristics of high surface area, excellent porosity, and superior thermo-chemical stability, have driven people to explore their potential as photocatalysts in photocatalytic organic transformations by virtue of their structural versatility and designability. Furthermore, the insolubility of COFs makes it possible to recycle the catalysts by simple technical means. In recent years, researchers have made great efforts to develop both the design strategies of COFs as heterogeneous photocatalysts and the reaction types of photocatalytic organic transformations. In this review, we focus on the design of COF-based photocatalytic materials and analyze the influence factors of photocatalytic performance. Moreover, we summarize the application of COFbased photocatalysts in photocatalytic organic conversion. Finally, the perspectives on new opportunities and challenges in the field are discussed.  相似文献   

9.
H2O2 photosynthesis coupled with biomass valorization can not only maximize the energy utilization but also realize the production of value-added products. Here, a series of COFs (i.e. Cu3-BT-COF, Cu3-pT-COF and TFP-BT-COF) with regulated redox molecular junctions have been prepared to study H2O2 photosynthesis coupled with furfuryl alcohol (FFA) photo-oxidation to furoic acid (FA). The FA generation efficiency of Cu3-BT-COF was found to be 575 mM g−1 (conversion ≈100 % and selectivity >99 %) and the H2O2 production rate can reach up to 187 000 μM g−1, which is much higher than Cu3-pT-COF, TFP-BT-COF and its monomers. As shown by theoretical calculations, the covalent coupling of the Cu cluster and the thiazole group can promote charge transfer, substrate activation and FFA dehydrogenation, thus boosting both the kinetics of H2O2 production and FFA photo-oxidation to increase the efficiency. This is the first report about COFs for H2O2 photosynthesis coupled with biomass valorization, which might facilitate the exploration of porous-crystalline catalysts in this field.  相似文献   

10.
Covalent organic frameworks (COFs) have emerged as a promising platform for photocatalysts. Their crystalline porous nature allows comprehensive mechanistic studies of photocatalysis, which have revealed that their general photophysical parameters, such as light absorption ability, electronic band structure, and charge separation efficiency, can be conveniently tailored by structural modifications. However, further understanding of the relationship between structure-property-activity is required from the viewpoint of charge-carrier transport, because the charge-carrier property is closely related to alleviation of the excitonic effect. In the present study, COFs composed of a fixed cobalt (Co) porphyrin (Por) centered tetraamine as an acceptor unit with differently conjugated di-carbaldehyde based donor units, such as benzodithiophene (BDT), thienothiophene (TT), or phenyl (TA), were synthesized to form Co-Por-BDT, Co-Por-TT, or Co-Por-TA, respectively. Their photocatalytic activity for reducing carbon dioxide into carbon monoxide was in the order of Co-Por-BDT>Co-Por-TT>Co-Por-TA. The results indicated that the excitonic effect, associated with their charge-carrier densities and π-conjugation lengths, was a significant factor in photocatalysis performance.  相似文献   

11.
Targeted synthesis of kagome ( kgm ) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric “two-in-one” monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60@m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.  相似文献   

12.
Three-dimensional covalent organic frameworks (3D COFs) with spatially periodic networks demonstrate significant advantages over their 2D counterparts, including enhanced specific surface areas, interconnected channels, and more sufficiently exposed active sites. Nevertheless, research on these materials has met an impasse due to serious problems in crystallization and stability, which must be solved for practical applications. In this Minireview, we first summarize some strategies for preparing functional 3D COFs, including crystallization techniques and functionalization methods. Hereafter, applications of these functional materials are presented, covering adsorption, separation, catalysis, fluorescence, sensing, and batteries. Finally, the future challenges and perspectives for the development of 3D COFs are discussed.  相似文献   

13.
将蒽醌作为构筑单元设计合成了醌基功能化的新型2,6-二氨基蒽醌共价有机框架(DAAQ-COF). 粉末X射线衍射、 氮气吸附-脱附、 红外和热重等分析结果表明, DAAQ-COF具有高的结晶度和比表面积(577 m2/g). 此外, 醌基功能化的无金属DAAQ-COF显示出高的析氧反应(OER)活性(10 mA/cm2下, 过电位389 mV, Tafel斜率135 mV/dec). 这源于引入的醌基基团有效改变了COF框架的电子结构和化学特性, 加上COF材料本身的高结晶度和比表面积, 使得反应物能更有效地与活性位点接触, 从而促进OER进程. 这些结果表明合理地设计功能化的COF材料能够进一步推动此类材料在电催化领域的应用.  相似文献   

14.
Metal nanoparticles in porous supports are of great importance for catalysis, separation and sensing, but their controllable preparation is still largely unmet. Herein, we describe a simple laser-induced synthesis of ultrafine gold nanoparticles in the covalent organic framework. Gold nanoparticles are well embedded, and they are about (1±0.1) nm in size. This work is universal for the preparation of well-dispersed and ultrafine metal nanoparticles in porous supports.  相似文献   

15.
Gas separation efficiency of covalent organic framework (COF) membrane can be greatly elevated through precise functionalization. A pair-functionalized COF membrane of 1,3,5-triformylphloroglucinol (TP) and isoquinoline-5,8-diamine (IQD) monomers in two and three nodes is designed and synthesized. TP-IQD is crystallized in a two-dimensional structure with a pore size of 6.5 Å and a surface area of 289 m2 g−1. This COF possesses N−O paired groups which cooperatively interact with C2H2 instead of C2H4. TP-IQD nanosheets of ≈10 μm in width and ≈4 nm in thickness are prepared by mechanical exfoliation; they are further processed with 6FDA-ODA polymer into a hybrid membrane. High porosity and functionality pair of TP-IQD offer the membrane with significantly increased C2H2 permeability and C2H2/C2H4 selectivity which are 160 % and 430 % higher of pure 6FDA-ODA. The boosted performance demonstrates high efficiency of the pair-functionality strategy for the synthesis of separation-led COFs.  相似文献   

16.
商林杰  刘江  兰亚乾 《应用化学》2022,39(4):559-584
Covalent organic frameworks (COFs)are a class of emerging materials connected by covalent bonds,which have high thermal/chemical stability (except boric acid COFs),permanent porosity,large specific surface area and good crystallinity. In addition,the structure of the monomer unit in COFs is adjustable and can coordinate with many transition metal ions to provide catalytic active sites. These advantages make COFs helpful to catalyze various reactions. Among them,COFs have an excellent catalytic effect on the CO2 reduction reaction(CO2 RR). This is mainly because the adjustable pore structure of COFs allows them to adsorb a large amount of CO2 and the π-π stacking structure in COFs can promote charge transfer, which can greatly improve the efficiency of CO2 reduction. COFs can be used as photo/ electrocatalysts to efficiently reduce CO2 to CO,CH4 ,HCOOH and other products. This review discusses the important achievements of CO2 RR catalyzed by COFs, including photo/electrocatalytic CO2 RR and photoelectric coupling CO2 RR. In addition,the future development of COFs as CO2 RR catalysts is also prospected. © 2022, Science Press (China). All rights reserved.  相似文献   

17.
H2O2 is a significant chemical widely utilized in the environmental and industrial fields, with growing global demand. Without sacrificial agents, simultaneous photocatalyzed H2O2 synthesis through the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels from seawater is green and sustainable but still challenging. Herein, two novel thiophene-containing covalent organic frameworks (TD-COF and TT-COF) were first constructed and served as catalysts for H2O2 synthesis via indirect 2e ORR and direct 2e WOR channels. The photocatalytic H2O2 production performance can be regulated by adjusting the N-heterocycle modules (pyridine and triazine) in COFs. Notably, with no sacrificial agents, just using air and water as raw materials, TD-COF exhibited high H2O2 production yields of 4060 μmol h−1 g−1 and 3364 μmol h−1 g−1 in deionized water and natural seawater, respectively. Further computational mechanism studies revealed that the thiophene was the primary photoreduction unit for ORR, while the benzene ring (linked to the thiophene by the imine bond) was the central photooxidation unit for WOR. The current work exploits thiophene-containing COFs for overall photocatalytic H2O2 synthesis via ORR and WOR dual channels and provides fresh insight into creating innovative catalysts for photocatalyzing H2O2 synthesis.  相似文献   

18.
Single site catalysts(SSCs) are a new type of heterogeneous catalysts formed by isolated metal atoms supported on kinds of substrates. SSCs have shown great potential for energy conversion and storage in recent years, especially for oxygen reduction reactions(ORR). Typically, SSCs are confined on the substrate by strong chemical interactions, such as coordination bonds. Therefore, the surface chemical environment and porous properties of the supports are crucial to the performance of SSCs. In recent years, COFs have become excellent candidates for preparing SSCs as they can precisely assemble monomers into highly ordered crystalline porous materials with a fine structure and definite components. In this review, we not only summarize the characteristics and advantages of COFs based SSCs, but also highlight the applications of COFs constructed from different single active sites for ORR in recent years. Finally, challenges in practical application, feasible strategies and perspectives are proposed for the of COFs based SSCs.  相似文献   

19.
Covalent organic frameworks (COFs) are known to be a promising class of materials for a wide range of applications, yet their poor solution processability limits their utility in many areas. Here we report a pore engineering method using hydrophilic side chains to improve the processability of hydrazone and β-ketoenamine-linked COFs and the production of flexible, crystalline films. Mechanical measurements of the free-standing COF films of COF-PEO-3 (hydrazone-linked) and TFP-PEO-3 (β-ketoenamine-linked), revealed a Young's modulus of 391.7 MPa and 1034.7 MPa, respectively. The solubility and excellent mechanical properties enabled the use of these COFs in dielectric devices. Specifically, the TFP-PEO-3 film-based dielectric capacitors display simultaneously high dielectric constant and breakdown strength, resulting in a discharged energy density of 11.22 J cm−3. This work offers a general approach for producing solution processable COFs and mechanically flexible COF-based films, which hold great potential for use in energy storage and flexible electronics applications.  相似文献   

20.
Photocatalytic oxygen reduction reaction (ORR) offers a promising hydrogen peroxide (H2O2) synthetic strategy, especially the one-step two-electron (2e) ORR route holds great potential in achieving highly efficient and selectivity. However, efficient one-step 2e ORR is rarely harvested and the underlying mechanism for regulating the ORR pathways remains greatly obscure. Here, by loading sulfone units into covalent organic frameworks (FS-COFs), we present an efficient photocatalyst for H2O2 generation via one-step 2e ORR from pure water and air. Under visible light irradiation, FS-COFs exert a superb H2O2 yield of 3904.2 μmol h−1 g−1, outperforming most reported metal-free catalysts under similar conditions. Experimental and theoretical investigation reveals that the sulfone units accelerate the separation of photoinduced electron-hole (e-h+) pairs, enhance the protonation of COFs, and promote O2 adsorption in the Yeager-type, which jointly alters the reaction process from two-step 2e ORR to the one-step one, thereby achieving efficient H2O2 generation with high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号