首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When a flow through a straight pipe is passed through a coiled section, two stabilizing effects come into play. First, in a certain Reynolds number range, the flow that is turbulent in the straight pipe becomes completely laminar in the coiled section. Second, the stabilization effect of the coil persists to a certain degree even after the flow downstream of the coil has been allowed to develop in a long straight section. In this paper, we report briefly on aspects related to these two effects.  相似文献   

2.
The paper examines the case where a pipe of length L is built-in at one end and the other end is subject to an imposed displacement or rotation. The criterion for instability of growth of a circumferential through-wall crack is shown to depend on the pipe-end boundary conditions as well as the pipe geometry, crack size and crack location. The worst possible case is that where there is only a force, but no moment, at the pipe-end. However, this is probably an artificial situation which is unlikely to arise in practice. A pipe is more likely to be built-in at both ends, and for this situation, it is concluded that the instability criterion is the same irrespective of whether a displacement or rotation is imposed at a built-in end.  相似文献   

3.
The response of a facility, consisting of a valveless reciprocating pump, a large settling chamber and a long straight smooth pipe, to a periodic change in the volume was analysed. The impedance of the pipe was estimated in both laminar and turbulent flow regimes under otherwise identical flow conditions. A good agreement with theory was obtained for the laminar flow. The estimate of the pipe impedance from the experimental data in turbulent flow was based on the momentum equation as well as on the measured resonant frequency of the system. These independent methods show that the inertance of the pipe has a qualitatively different behavior in laminar and turbulent flow regimes.  相似文献   

4.
由充液弯管三维振动模型切入,应用动刚度法构建了弯管及直管单元的振动求解方法,进而用于组装求解充液管系的振动,可同时适用于含弯管单元的连续模型或只含直管单元的离散模型;通过算例对比,证明动刚度法比传递矩阵法和有限元法在计算效率和精度上有所提升;与充液L型管道振动实验测得的加速度频响曲线对比,验证了本文对于管道组装的计算方法的有效性,此外还分析了连续模型和离散模型的区别及适用范围。  相似文献   

5.
In the present study, fully developed laminar flow and heat transfer in a helically coiled tube with uniform wall temperature have been investigated analytically. Expressions involving relevant variables for entropy generation rate contributed to heat transfer and friction loss, and total entropy generation rate have been derived. The effect of various flow and coil parameters like Reynolds number, curvature ratio, coil pitch, etc. on the entropy generation rate has been studied for two fluids- air and water. The results of the present study have been compared to the corresponding entropy generation values of straight pipe. Investigating the results, some optimum values for Reynolds number have been proposed and compared with the optimum Reynolds numbers of laminar flow inside a coiled tube subjected to constant heat flux boundary condition.  相似文献   

6.
The problem of an extensional stress pulse applied to a bounded helical coil assembly is formulated and solved. The assembly is composed of one turn of a small pitched coil attached tangentially to two straight segments. One end of the assembly is always fixed while the other is free when not subjected to the action of the pulse. It is found that to prevent significant portions of the shock from reaching the fixed end, the pulse length should be longer than the circumference of the coil but shorter than twice the length of the initial straight segment. Flexural energy continuously leaks into the coil from the straight segment. Experiments were performed which verify the analytical solution.  相似文献   

7.
Local heat transfer and pressure drop measurements were made during condensation of a zeotropic CFC114-CFCll3 refrigerant mixture in the annulus of a double-tube coil consisting of three U-bends and four straight lengths. The inner tube is a 19.1-mm O.D. corrugated copper tube with wire fins soldered onto the outer surface and the inner diameter of the outer duct is 25.0 mm. The vapor-phase mass transfer coefficient exhibited a sawtooth behavior with the U-bends showing higher coefficients than the straight lengths. The frictional pressure gradient data agreed well with a previously developed empirical equation for the condensation of pure refrigerants. A prediction method for the condensation heat transfer rate was proposed on the basis of the correlations of the vapor-phase mass transfer coefficient and heat transfer coefficient of the condensate film. The heat transfer data were correlated by the present method to a mean absolute deviation of 12.9%.  相似文献   

8.
Previous numerical and theoretical results (Chen et al., 2019; Liu et al., 2018; Zhao et al., 2019) based on the optimization theory of convective heat transfer reveal that the optimized flow structures in a straight circular pipe enhancing convective heat transfer are multiple longitudinal vortices. This conclusion encourages us to find out whether such flow structures really exist in some enhanced heat transfer pipes by means of advanced experimental techniques. Therefore, a typical enhanced heat transfer pipe was selected, namely a spirally corrugated pipe, and stereoscopic particle image velocimetry (SPIV) was employed to measure its internal instantaneous flow field. Moreover, the proper orthogonal decomposition (POD) method was used to extract the large-scale coherent structures from the measured instantaneous velocity fields. Besides the spirally corrugated pipe, the fully developed turbulent flow in a straight pipe was also analyzed as benchmark of the enhanced heat transfer pipes. The results reveal that longitudinal whirling flow with multi-vortices is formed in both the fully developed turbulent flow field of the straight pipe and the spirally corrugated one. It is thus easy to explain the heat transfer enhancement mechanism of the above flow structures from the perspective of momentum transfer. The flow structures of the fully developed turbulent flow in a straight pipe are quite similar to the optimal flow pattern from the optimization theory. More specifically, multiple longitudinal vortices are spontaneously generated due to turbulence without external heat transfer enhancement techniques. Furthermore, the flow structures similar to multiple longitudinal vortices also exist in the spirally corrugated pipe, although these flow structures deviate from symmetric multiple vortices. Moreover, the flow structures in the spirally corrugated pipe are much more energetic than those in the fully developed turbulent flow in a straight pipe. This is probably the reason why a spirally corrugated pipe can enhance heat transfer compared with a straight circular pipe.  相似文献   

9.
In the present study, the heat transfer characteristics in dry surface conditions of a new type of heat exchanger, namely a helically coiled finned tube heat exchanger, is experimentally investigated. The test section, which is a helically coiled fined tube heat exchanger, consists of a shell and a helical coil unit. The helical coil unit consists of four concentric helically coiled tubes of different diameters. Each tube is constructed by bending straight copper tube into a helical coil. Aluminium crimped spiral fins with thickness of 0.5 mm and outer diameter of 28.25 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Ambient air is used as a working fluid in the shell side while hot water is used for the tube-side. The test runs are done at air mass flow rates ranging between 0.04 and 0.13 kg/s. The water mass flow rates are between 0.2 and 0.4 kg/s. The water temperatures are between 40 and 50°C. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients are discussed. The air-side heat transfer coefficient presented in term of the Colburn J factor is proportional to inlet-water temperature and water mass flow rate. The heat exchanger effectiveness tends to increase with increasing water mass flow rate and also slightly increases with increasing inlet water temperature.  相似文献   

10.
In this work the fluid–structure interactions are considered by investigating a straight but slender pipe interacting with uniform water flow. Two configurations are studied, namely vertically and horizontally positioned pipes, which are modelled as an Euler–Bernoulli beam with flexural stiffness. Both pretension and length-wise mass distribution are considered. The structure is assumed to be moving only in the direction normal to flow (cross-flow motion) hence its in-line motion is neglected. The external fluid force acting on the structure is the result of the action of sectional vortex-induced drag and lift forces. Only mean drag force is considered, with time varying lift force modelled using a non-linear oscillator equation of the Van der Pol type. The obtained coupled system of non-linear partial differential equations is simplified employing Galerkin-type discretisation. The resulting ordinary differential equations are solved numerically providing multi-mode approximations of cross-flow displacement and non-dimensional lift coefficient. The comparison between the responses of vertical and horizontal structures shows that, as expected, due to a balancing between pretension and weight, in general a higher amplitude of vibration is observed for the vertical configuration than in the same location along the pipe for the horizontal configuration in the lower part of the structure. However, lower amplitudes are obtained in the upper part of the pipe. The horizontal configuration solutions are identical in symmetrical locations along the pipe due to constant pretension. The influence of the wake equation coefficients and the fluid force coefficients on the response amplitudes has been also considered together with the length of the pipe and pretension level, and the appropriate response curves are included. Finally, for the higher mode approximations it has been shown that the vibrations level at lower frequencies is predicted reasonably well by retaining only a small subset of modes.  相似文献   

11.
This paper evaluates seven cyclic plasticity models for structural ratcheting response simulations. The models evaluated are bilinear (Prager), multilinear (Besseling), Chaboche, Ohno–Wang, Abdel Karim–Ohno, modified Chaboche (Bari and Hassan) and modified Ohno–Wang (Chen and Jiao). The first three models are already available in the ANSYS finite element package, whereas the last four were implemented into ANSYS for this study. Experimental responses of straight steel pipes under cyclic bending with symmetric end rotation history and steady internal pressure were recorded for the model evaluation study. It is demonstrated that when the model parameters are determined from the material response data, none of the models evaluated perform satisfactorily in simulating the straight pipe diameter change and circumferential strain ratcheting responses. A detailed parameter sensitivity study with the modified Chaboche model was conducted to identify the parameters that influence the ratcheting simulations and to determine the ranges of the parameter values over which a genetic algorithm can search for refinement of these values. The refined parameter values improved the simulations of straight pipe ratcheting responses, but the simulations still are not acceptable. Further, improvement in cyclic plasticity modeling and incorporation of structural features, like residual stresses and anisotropy of materials in the analysis will be essential for advancement of low-cycle fatigue response simulations of structures.  相似文献   

12.
研究液固耦合效应作用下,两端铰支输液管道系统附加支承的刚度和位置优化设计。应用有限元分析方法,建立了输液管道液固耦合振动方程。为有效控制管道结构的振动,利用在管道结构上附(增)加支承的方法,提高输液管道系统的固有频率,预防系统可能发生强烈的耦合振动导致不稳定状态。提出了附加支承最小(临界)刚度的快速计算策略和途径,分别探讨分析了输液管道内液体的流速、附加支承的位置以及第一阶固有频率的目标值对最优支承刚度值的影响。  相似文献   

13.
The nonlinear dynamics time evolution of an electromagnetically levitated (EML) droplet is considered in this study. The droplet is modeled as a three dimensional system with lumped masses and elastic springs. A new expression for the spring elastic constants in a global stiffness matrix has been derived, and equations of motion presented. The chaotic behavior of the system is analyzed for different coil configurations. The stability of the motion is studied using the Lyapunov exponents. Computations were performed for droplets of aluminum and copper.  相似文献   

14.
为探明爆炸冲击条件下管线接头部位受力变形的特点和规律,在室内爆炸试验碉堡测试系统内分别对直管线、带直接头和弯头管线动力响应情况进行对比试验研究,测试了接头连接处迎爆面及其背面的轴向应变,并对测试结果进行了对比分析。结果表明,管径突变会产生应力集中,接头部位是管线系统的薄弱环节;接头的厚径比是影响接头部位防爆抗震性能的重要参数;接头的类型是影响管线系统防爆抗震性能的重要因素,在管线设计中要尽量减少弯头数量,设置橡胶软接头可增强管线系统防爆抗震性能。  相似文献   

15.
冯宝平  米建春 《力学学报》2009,41(5):609-617
报道出口条件对圆形湍流射流自保持性影响的实验研究结果. 对来自渐缩和长管两种不同结构喷嘴的射流,在相同雷诺数条件下,沿轴线进行了速度测量; 研究的统计量包括平均速度、湍流强度、高阶矩、能谱和积分尺度. 实验结果表明,渐缩喷嘴射流比长管射流发展得更快、更容易达到自保持状态. 通过对比发现,在两射流的速度(温度)场中,平均速度(温度)、湍流强度、偏斜因子和平坦度因子都存在明显的异同. 同时发现两射流的积分尺度随轴向距离的增加都成线性增长,且在渐缩喷嘴射流中增长得更快. 通过对比两射流的边界层厚度、径向与轴向湍流强度的比值、湍动能能谱图并结合前人的研究结果,对两射流湍流场所表现出的不同的统计学行为给出了合理的解释.   相似文献   

16.
In this study, the nonplanar post-buckling behavior of a simply supported fluid-conveying pipe with an axially sliding downstream end is investigated within the framework of a three-dimensional(3 D) theoretical model. The complete nonlinear governing equations are discretized via Galerkin’s method and then numerically solved by the use of a fourth-order Runge-Kutta integration algorithm. Different initial conditions are chosen for calculations to show the nonplanar buckling characteristics of th...  相似文献   

17.
The temperature distribution in the magnetohydrodynamic axial flow in a circular pipe has been found by using an alternating direction implicit method which has been suitably modified for r-θ-z geometry. First the temperature distribution for from the discontinuity, which ceases to depend upon the axial coordinate, has been found. This has been used to determine the results on both sides of the discontinuity. It is found that the temperature falls as the Hartmann number is increased, and convection dominates for large values of the Peclet number. The effect of the Hartmann number is more pronounced when Peclet number is large.  相似文献   

18.
The effects of the magnetothermal force on the flows of heat and fluid through a pipe are investigated numerically when the pipe wall is either heated or cooled at constant heat flux. The flow is laminar and a paramagnetic fluid is presumed as the working fluid. Because the magnetic susceptibility of a paramagnetic fluid depends on the inverse of its temperature, the magnetothermal force is induced by coupling of the temperature field and magnetic induction. First, the effects are discussed using the case of a magnetic field induced by a single-turn concentrically placed electric coil. It is found that the effects of the magnetothermal force differ according to whether the pipe is cooled or heated. When cooled, the heat and fluid flows are affected behind the coil; the flow is repelled from the wall to the center and the thermal boundary layer thickens. By decomposing the force into the radial and axial directions in the heated and cooled cases, it is clarified that the axial force changes from positive to negative depending on the coil location in the heated case. Therefore, it can be concluded that the effects are not simply oppositional in the heated and cooled cases. In relation to the heat transfer, only when the coil is placed at the threshold of the heating/cooling zone do the effects on the local heat transfer become the opposite of each other. At other coil locations, the suppression of heat transfer is dominant ahead of the coil in the heated case, as indicated in previous work by our group. However, in the cooled case, this effect occurs behind the coil. For a more practical case, a solenoid coil is employed in the simulation. It is then found that the effect on the heat transfer becomes remarkable at the solenoid edges, especially for the heat-transfer suppression in both the heated and cooled cases.  相似文献   

19.
Nanofluids are employed as the working medium for a conventional cylindrical heat pipe. A cylindrical copper heat pipe of 19.5?mm outer diameter and 400?mm length was fabricated and tested with two different working fluids. The working fluids used in this study are DI-water and Nano-particles suspension (mixture of copper nano particle and DI-water). The overall heat transfer coefficient of the heat pipe was calculated based on the lumped thermal resistance network and compared with the heat transfer coefficient of base fluid filled heat pipe. There is a quantitative improvement in the heat transfer coefficient using nano-particles suspension as the working medium. A heat transfer correlation was also developed based on multiple regression least square method and the results were compared with that obtained by the experiment.  相似文献   

20.
This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling instability occurs. In the case of low flow velocity, the pipe is stable with a straight equilibrium position and the dynamics of the system can be examined using linear theory. When the flow velocity is beyond the critical value, any motions of the pipe could be around the postbuckling configuration (non-zero equilibrium position) rather than the straight equilibrium position, so nonlinear theory is required. The nonlinear equations of perturbed motions around the postbuckling configuration are derived and solved with the aid of Galerkin discretization. It is found, for a given flow velocity, that the first-mode frequency for in-plane motions is quite different from that for out-of-plane motions. However, the second- or third-mode frequencies for in-plane motions are approximately equal to their counterparts for out-of-plane motions, keeping almost constant values with increasing flow velocity. Moreover, the orientation angle of the postbuckling configuration plane for a buckled pipe can be significantly affected by initial conditions, displaying new features which have not been observed in the same pipe system factitiously supposed to deform in a single plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号