首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
There is clear and incontrovertible evidence that the viscosity of many liquids depends on the pressure. While the density, as the pressure is increased by orders of magnitude, suffers small changes in its value, the viscosity changes dramatically. It can increase exponentially with pressure. In many fluids, there is also considerable evidence for the viscosity to depend on the rate of deformation through the symmetric part of the velocity gradient, and most fluids shear thin, i.e., viscosity decreases with an increase in the rate of shear. In this paper, we study the flow of fluids whose viscosity depends on both the pressure and the symmetric part of the velocity gradient. We find that the shear thinning nature of the fluid can be gainfully exploited to obtain global existence of solution, which would not be possible otherwise. Previous studies of fluids with pressure dependent viscosity require strong restrictions to all data, or assume forms that are clearly contrary to experiments, namely that the viscosity decreases with the pressure. We are able to establish existence of space periodic solutions that are global in time for both the two- and three-dimensional problem, without restricting ourselves to small data.  相似文献   

2.
Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class of viscosities and in order to explain the main idea in as simple a manner as possible, we restrict ourselves to a discussion of the spatially periodic problem. K. R. Rajagopal thanks the National Science Foundation for its support.  相似文献   

3.
We study the unsteady motion of a viscoelastic fluid modeled by a second-order fluid where normal stress coefficients and viscosity depend on the shear rate by using a power-law model. To study this problem, we use the one-dimensional nine-director Cosserat theory approach which reduces the exact three-dimensional equations to a system depending only on time and on a single spatial variable. Integrating the equation of conservation of linear momentum over the tube cross-section, with the velocity field approximated by the Cosserat theory, we obtain a one-dimensional system. The velocity field approximation satisfies both the incompressibility condition and the kinematic boundary condition exactly. From this one-dimensional system we obtain the relationship between average pressure and volume flow rate over a finite section of the tube with constant and variable radius. Also, we obtain the correspondent equation for the wall shear stress which enters directly in the formulation as a dependent variable. Attention is focused on some numerical simulation of unsteady/steady flows for average pressure, wall shear stress and on the analysis of perturbed flows.  相似文献   

4.
This article discusses analytical solutions for a nonlinear problem arising in the boundary layer flow of power-law fluid over a power-law stretching surface. Using perturbation method analytical solution is presented for linear stretching surface. This solution covers large range of shear thinning and shear thickening fluids and matches excellently with the numerical solution. Furthermore, some new exact solutions are found for particular combination of m (power-law stretching index) and n (power-law fluid index). This leads to generalize the case of linear stretching to nonlinear stretching surface. The effects of fluid index n on the boundary layer thickness and the skin friction for nonlinear stretching surface is analyzed and discussed. It is observed that the boundary layer thickness and the skin friction coefficient increase as non-linear parameter n decreases. This study gives a new dimension to obtain analytical solutions asymptotically for highly nonlinear problems which to the best of our knowledge has not been examined so far.  相似文献   

5.
Stokes recognized that the viscosity of a fluid can depend on the normal stress and that in certain flows such as flows in a pipe or in channels under normal conditions, this dependence can be neglected. However, there are many other flows, which have technological significance, where the dependence of the viscosity on the pressure cannot be neglected. Numerous experimental studies have unequivocally shown that the viscosity depends on the pressure, and that this dependence can be quite strong, depending on the flow conditions. However, there have been few analytical studies that address the flows of such fluids despite their relevance to technological applications such as elastohydrodynamics. Here, we study the flow of such fluids in a pipe under sufficiently high pressures wherein the viscosity depends on the pressure, and establish an explicit exact solution for the problem. Unlike the classical Navier-Stokes solution, we find the solutions can exhibit a structure that varies all the way from a plug-like flow to a sharp profile that is essentially two intersecting lines (like a rotated V). We also show that unlike in the case of a Navier-Stokes fluid, the pressure depends both on the radial and the axial coordinates of the pipe, logarithmically in the radial coordinate and exponentially in the axial coordinate. Exact solutions such as those established in this paper serve a dual purpose, not only do they offer solutions that are transparent and provide the solution to a specific but simple boundary value problems, but they can be used also to test complex numerical schemes used to study technologically significant problems.  相似文献   

6.
We study generalizations of the Darcy, Forchheimer, Brinkman and Stokes problem in which the viscosity and the drag coefficient depend on the shear rate and the pressure. We focus on existence of weak solutions to the problem, with the chief aim to capture as wide a group of viscosities and drag coefficients as mathematically feasible and to provide a theory that holds under minimal, not very restrictive conditions. Even in the case of generalized Stokes system, the established result answers a question on existence of weak solutions that has been open so far.  相似文献   

7.
The dependence of the viscosity of fluids on pressure has been well established by experiments and it needs to be taken into consideration in problems where there is a large variation of pressure in the flow domain. In this paper we consider the flow of a fluid in the annulus between two cylinders whose viscosity depends on the pressure. First we consider the steady flow in the annulus due to the rotation of one cylinder with respect to the other. Then we study the problem of flow in the annular region due to torsional and longitudinal oscillations of one cylinder with respect to the other. In both the problems considered the flow is found to be markedly different from that for the incompressible Navier–Stokes fluid with constant viscosity.  相似文献   

8.
The effect of power-law rheology on hydraulic fracturing is investigated. The evolution of a two-dimensional fracture with non-zero initial length and driven by a power-law fluid is analyzed. Only fluid injection into the fracture is considered. The surrounding rock mass is impermeable. With the aid of lubrication theory and the PKN approximation a partial differential equation for the fracture half-width is derived. Using a linear combination of the Lie-point symmetry generators of the partial differential equation, the group invariant solution is obtained and the problem is reduced to a boundary value problem for an ordinary differential equation. Exact analytical solutions are derived for hydraulic fractures with constant volume and with constant propagation speed. The asymptotic solution near the fracture tip is found. The numerical solution for general working conditions is obtained by transforming the boundary value problem to a pair of initial value problems. Throughout the paper, hydraulic fracturing with shear thinning, Newtonian and shear thickening fluids are compared.  相似文献   

9.
In order to describe the behavior of various liquid-like materials at high pressures, incompressible fluid models with pressure dependent viscosity seem to be a suitable choice. In the context of implicit constitutive relations involving the Cauchy stress and the velocity gradient these models are consistent with standard procedures of continuum mechanics. Understanding the mathematical properties of the governing equations is connected with various types of idealizations, some of them lead to studies in unbounded domains. In this paper, we first bring up several characteristic features concerning fluids with pressure dependent viscosity. Then we study the three-dimensional flows of a class of fluids with the viscosity depending on the pressure and the shear rate. By means of higher differentiability methods we establish the large data existence of a weak solution for the Cauchy problem. This seems to be a first result that analyzes flows of considered fluids in unbounded domains. Even in the context of purely shear rate dependent fluids of a power-law type the result presented here improves some of the earlier works.  相似文献   

10.
The Muskat, or Muskat‐Leibenzon, problem describes the evolution of the interface between two immiscible fluids in a porous medium or Hele‐Shaw cell under applied pressure gradients or fluid injection/extraction. In contrast to the Hele‐Shaw problem (the one‐phase version of the Muskat problem), there are few nontrivial exact solutions or analytic results for the Muskat problem. For the stable, forward Muskat problem, in which the higher‐viscosity fluid expands into the lower‐viscosity fluid, we show global‐in‐time existence for initial data that is a small perturbation of a flat interface. The initial data in this result may contain weak (e.g., curvature) singularities. For the unstable, backward problem, in which the higher‐viscosity fluid contracts, we construct singular solutions that start off with smooth initial data but develop a point of infinite curvature at finite time. © 2004 Wiley Periodicals, Inc.  相似文献   

11.
In this paper we investigate the effect of a prescribed superficial shear stress on the generation and structure of roll waves developing from infinitesimal disturbances on the surface of a power-law fluid layer flowing down an incline. The unsteady equations of motion are depth integrated according to the von Kármán momentum integral method to obtain a non-homogeneous system of nonlinear hyperbolic conservation laws governing the average flow rate and the thickness of the fluid layer. By conducting a linear stability analysis we obtain an analytical formula for the critical conditions for the onset of instability of a uniform and steady flow in terms of the prescribed surface shear stress. A nonlinear analysis is performed by numerically calculating the nonlinear evolution of a perturbed flow. The calculation is carried out using a high-resolution finite volume scheme. The source term is handled by implementing the quasi-steady wave propagation algorithm. Conclusions are drawn regarding the effect of the applied surface shear stress parameter and flow conditions on the development and characteristics of the roll waves arising from the instability. For a Newtonian flow subjected to a prescribed superficial shear stress, using an analytical theory, we show that the nonlinear governing equations do not admit roll waves solutions under conditions when the uniform and steady flow is linearly stable. For the case of a general power-law fluid flow with zero shear stress applied at the surface, the analytical investigation leads to a procedure for calculating the characteristics of a roll waves flow. These results are compared with those yielded by the numerical procedure.  相似文献   

12.
The problem on a fluid flow in a pulsating vessel is considered in the framework of the quasi-one-dimensional hemodynamic equations. The fluid viscosity is assumed to be anisotropic; i.e., the viscosity coefficient depends on the flow direction. The possible solutions are studied analytically and numerically.  相似文献   

13.
The classical problem of thermal-convection involving the classical Navier–Stokes fluid with a constant or temperature dependent viscosity, within the context of the Oberbeck–Boussinesq approximation, is one of the most intensely studied problems in fluid mechanics. In this paper, we study thermal-convection in a fluid with a viscosity that depends on both the temperature and pressure, within the context of a generalization of the Oberbeck–Boussinesq approximation. Assuming that the viscosity is an analytic function of the temperature and pressure we study the linear as well as the non-linear stability of the problem of Rayleigh–Bénard convection. We show that the principle of exchange of stability holds and the Rayleigh numbers for the linear and non-linear stability coincide.  相似文献   

14.
The classical problem of thermal-convection involving the classical Navier–Stokes fluid with a constant or temperature dependent viscosity, within the context of the Oberbeck–Boussinesq approximation, is one of the most intensely studied problems in fluid mechanics. In this paper, we study thermal-convection in a fluid with a viscosity that depends on both the temperature and pressure, within the context of a generalization of the Oberbeck–Boussinesq approximation. Assuming that the viscosity is an analytic function of the temperature and pressure we study the linear as well as the non-linear stability of the problem of Rayleigh–Bénard convection. We show that the principle of exchange of stability holds and the Rayleigh numbers for the linear and non-linear stability coincide.  相似文献   

15.
The Boussinesq approximation, where the viscosity depends polynomially on the shear rate, finds more and more frequent use in geological practice. In this article, we consider the periodic initial value problem and initial value problem for the non-Newtonian Boussinesq equations describing the behavior of flows of an incompressable viscous fluid in processes where the thermal effects play an essential role. The existence of weak solution is proved for p ≥2, its uniqueness and regularity for p>(1+2n/(n+2)).  相似文献   

16.
Naoki Tsuge 《Acta Appl Math》2017,147(1):177-186
We are concerned with a scalar conservation law with a source term. This equation is proposed to describe the qualitative behavior of waves for a general system in resonance with the source term by T.P. Liu. In addition to this, the scalar conservation law is used in various areas such as fluid dynamics, traffic problems etc.In the present paper, we prove the global existence and stability of entropy solutions to the Cauchy problem. The difficult point is to obtain the bounded estimate of solutions. To solve it, we introduce some functions as the lower and upper bounds. Therefore, our bounded estimate depends on the space variable. This idea comes from the generalized invariant region theory for the compressible Euler equation. The method is also applicable to other nonlinear problems involving similar difficulties. Finally, we use the vanishing viscosity method to construct approximate solutions and derive the convergence by the compensated compactness.  相似文献   

17.
We consider the Cauchy problem for the system of equations governing flow of isothermal reactive mixture of compressible gases. Our main contribution is to prove sequential stability of weak solutions when the state equation essentially depends on the species concentration and the viscosity coefficients vanish on vacuum. Moreover, under additional assumption on the “cold” component of the pressure in the regions of small density, we prove the existence of weak solutions for arbitrary large initial data.  相似文献   

18.
非牛顿流体偏心环空螺旋流的解析解   总被引:2,自引:0,他引:2  
石油和化工中许多问题需要求解非牛顿流体偏心环空螺旋流。本文全面地研究了幂律流体和宾汉流体在偏心环空中层流螺旋流的流动规律与流动状态的判别。在理论上,根据流体力学原理,运用数学方法,在作者同心环空螺旋流的理论基础上,通过对偏心环空螺旋流流场的无限细分法,给出了该流场的视粘度分布、速度分布、流量和压降方程,进而建立了判别流态的稳定性参数。  相似文献   

19.
In this paper, we study the heat transfer in the fully developed flow of a viscoelastic fluid, a slag layer, down a vertical wall. A new constitutive relation for the stress tensor of this fluid is proposed, where the viscosity depends on the volume fraction, temperature, and shear rate. For the heat flux vector, we assume the Fourier's law of conduction with a constant thermal conductivity. The model is also capable of exhibiting normal stress effects. The governing equations are non‐dimensionalized and numerically solved to study the effects of various dimensionless parameters on the velocity, temperature, and volume fraction. The effect of the exponent in the Reynolds viscosity model is also discussed. The different cases of shear‐thinning and shear‐thickening, cooling and heating, are compared and discussed. The results indicate that the viscous dissipation and radiation (at the free surface) cause the temperature to be higher inside the flow domain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
For a large class of fluids the relation between shear stress and shear velocity is not longer a constant. The viscosity μ is now a function which depends on the position, the time and the shear-velocity. In our paper we will deal with a class of fluids with variable viscosity functions which correspond to fluid flow equations that permit a representation of the solution by the aid of a quaternionic operator calculus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号