首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Demands for flexible electronic equipment such as wearable devices and wrap-round displays have motivated the development of flexible energy storage devices. Although cellulose paper is one of the most promising substrates for flexible devices, its intrinsic limitations, such as poor mechanical durability, hamper its practical use. In this study, we adopted the traditional Korean paper, Hanji, with superior mechanical robustness as a substrate for supercapacitor electrodes. The effective infiltration of activated carbons (ACs) as an electrode material into the dense network of Hanji cellulose fibers was performed by a simultaneous one-pot process of network formation and AC embedment. The fabricated symmetric supercapacitors based on the AC-embedded Hanji electrode exhibited a specific capacitance (Csp) of 16.0 F/g measured at a scan rate of 10 mV/s with excellent cycle stability, the Csp retention of 94.5%, over 1000 charge-discharge cycles.  相似文献   

2.
The extraordinary stability and cycle life performance of today’s electrochemical double-layer capacitors (EDLCs) are generally ascribed to the fact that charge storage in activated carbon (AC) is based on pure double-layer charging. In contrast, Faradaic charge-transfer reactions like those occurring in batteries are often connected with dimensional changes, which can affect the cycle life of these storage devices. Here we report the charge-induced height change of an AC electrode in an aprotic electrolyte solution, 1 mol/l (C2H5)4NBF4 (TEABF4) in acetonitrile. The results are compared with those obtained for a graphite electrode in the same electrolyte. For both electrodes, we observe an expansion/contraction of several percent for a potential window of ±2 V vs. the immersion potential (ip). For the EDLC electrode, significant expansion starts at about 1 V remote from the ip and hence is well within the normal EDLC operation range. For the graphite electrode, the height changes are unambiguously caused by intercalation/deintercalation of both anions and cations. The close analogies between the graphite and the EDLC electrode suggest that ion intercalation or insertion processes might play a major role for charge storage, self discharge, cyclability, and the voltage limitation of EDLCs. PACS 82.47.Uv; 82.45.Fk; 82.45.Gj; 82.80.Fk; 81.05.Uw  相似文献   

3.
Single-particle sequential tunneling is studied through a negative-U center hybridized with a superconducting, a ferromagnetic, and a normal metal electrodes. In stark contrast to the case of positive U, the single-particle tunneling in attractive charging energy is usually prohibited by ground states with electrons in pairs. We find a microscopic mechanism to induce single-particle sates from pair states. As a consequence, in the nonpolarized metal terminal a remarkable pure spin current with no charge currents survives over a wide range of gate- and bias- voltages, which is rather crucial for experimental observation and design of spintronic devices. In addition, a significant spin-filter effect is presented in certain bias regime.  相似文献   

4.
固体核磁共振技术是研究固态高分子材料中结构和分子动力学的一种非常重要和有效的手段. 该技术的一个重要特点是可以通过合理的实验方法,实现对研究体系中从低频(Hz)到中频(kHz)乃至高频(MHz)范围内分子运动的观测. 因此,固体核磁共振技术非常适合研究高分子体系中各类不同尺度分子运动. 该文首先简要介绍核磁共振研究分子运动的基本原理和方法,以及固态高分子体系的结构和分子动力学特点,然后结合固态高分子体系中的一些例子对核磁共振在固态高分子多尺度分子运动方面的一些研究成果展开讨论.  相似文献   

5.
Charging of the surface of an oxide caused by the adsorption of hydrogen ions and ions of inert 1:1 electrolyte was investigated by using grand canonical Monte Carlo simulation technique. In particular, adsorption isotherms of protons as well as of ions of the electrolyte together with the resulting charge density of the surface were obtained for different system parameters. Also, the effect of the surface energetic heterogeneity and the concentration of the background electrolyte on the isotherms and the charge density curves was examined. Furthermore, lateral interactions in the mixed adsorbed phase were taken into account in the modeling of the system behavior. The obtained results, in general, suggest that the three factors mentioned above may have substantial influence on the charging mechanism at the liquid/oxide interface.  相似文献   

6.
The lithium-ion batteries show extremely poor cycling performance at low temperature. The main degradation mechanism is not clear. To address the fading mechanism, the cycling degradation of commercial LiFePO4/mesocarbon microbead (MCMB) batteries under various charge rate (1/10C, 1/3C, 1/2C, and 1C) at ?10 °C is systematically investigated using nondestructive tests combining with post-mortem analysis. The low-temperature charging under high charge rates of 1/3C, 1/2C, and 1C results in severe lithium plating, which leads to extremely serious capacity loss. In contrast, no lithium plating occurred under low charge rate of 1/10C. The lithium plating on the anode surface leads to consumption of active lithium ions and electrolyte, which causes the capacity decay and increases ohmic resistance (R b) with cycling number under high charge rates. The lithium plating on the anode surface is partially reversible, which brings about the capacity recovery of batteries after 80 cycles at 25 °C. The above results are proved by the followed post-mortem measurements. The evolution of the surface morphologies of MCMB electrodes upon cycling shows that a layer composed of rod-like lithium is formed on the anode surface.  相似文献   

7.
Silica aerogel (SiO2 aerogel) was prepared by sol–gel method from tetraethyl orthosilicate hydrolyzation and has been characterized by scanning electron microscopy and N2 adsorption for its surface structure, surface area, and pore-size distribution. Constant current charge–discharge technique, cyclic voltammetry, and electrochemical impedance spectrum were employed for its specific capacitance and equivalent series resistance. The results showed that the maximum specific capacitance of SiO2 aerogel electrode in 1 M Et4NBF4/PC electrolyte was 62.5 F g−1. In addition, the SiO2 aerogel capacitor exhibits excellent long-term stability with no significant degradation after 500 charging and discharging cycles. Therefore, the application of high surface area SiO2 aerogel as electrodes in supercapacitor devices is promising.  相似文献   

8.
为了有效利用石墨烯和导电聚合物材料,光雕石墨烯/聚3,4-乙撑二氧噻吩(LSG/PEDOT)复合薄膜通过一种灵巧的光雕工艺制备出来。在此复合薄膜中,每种组分对薄膜的电化学性能提升都有独特的贡献。循环伏安、交流阻抗及恒流充放电测试用来检测薄膜的电化学性能。结果显示,在引入PEDOT纳米颗粒后,LSG/PEDOT复合薄膜显示出更好的能量存储能力。复合薄膜的比容量达到64.33 F/cm3,是光雕石墨烯比容量(3.89 F/cm3)的20倍,复合薄膜经过1000次循环后仍能保持初始容量的94.6%。复合薄膜电化学性能的提升主要是由于引入的PEDOT纳米颗粒既阻挡了石墨烯的层层堆叠,又增加了整个薄膜的比表面积。此种灵活的光雕工艺还可以用来大规模制备超级电容器电极。  相似文献   

9.
A technique developed recently for in situ solid-state 1H NMR studies of adsorption processes has been used to probe hydration of the solid acid catalyst H-ZSM-5, yielding information on the interaction between the adsorbed water molecules and Brønsted acid sites on the H-ZSM-5 host material. Quantitative analysis of the results from the in situ experiment allows the average size of water clusters associated with the Brønsted acid sites to be determined directly, and suggests that there is a preference to form clusters comprising five–six water molecules. The in situ 1H NMR data also provide insights into kinetic aspects of the adsorption process.  相似文献   

10.
Paramagnetic relaxation enhancement (PRE) solid-state NMR (ssNMR) was used to monitor the valence state alternation of copper species doped in HY zeolite during catalytic reaction processes. The combination of PRE ssNMR and in-situ NMR spectroscopy facilitates the detection of copper species as well as the monitoring of evolution from reactants, intermediates to products in heterogeneously catalyzed processes, which is of great importance for elucidating the detailed catalytic reaction mechanism.  相似文献   

11.
In this communication the electrical characteristics of poly(methylsilsesquioxane) (PMSSQ) thin films and the possibility of charge storage in the Au nanoparticle embedded PMSSQ film base memory element have been studied. PMSSQ films were sandwiched between Al and Si electrodes to fabricate metal-polymer-semiconductor (MPS) structures. The conduction mechanism in PMSSQ films has been investigated. The charge transport mechanism appears to be space charge limited current (SCLC) at the higher-voltage region. Various electrical parameters such as reverse saturation current, barrier height, ideality factor, rectification ratio, shunt and series resistance and charge carrier mobility in PMSSQ have been determined. C-V analysis is performed to confirm the memory effect for Au nanoparticles embedded MPS structures. A definite clockwise hysteresis is observed which indicates the possibility of charge storage in the Au nanoparticles embedded PMSSQ film.  相似文献   

12.
Charging of aerosol droplets and solid particles is applied in many industrial processes such as electrostatic painting, particle separation and electrostatic precipitation. In most of charging devices, electrical discharges are used as a source of ions, which are deposited onto the particles. In the present paper, the charging process by ionic current in alternating electric field was optimized experimentally. Alternating electric field charger was used as a charging device in these experiments. The current voltage characteristics of electrical discharge in this device, and the charge imparted to the particles were determined. The level of charge was measured at the outlet of the charger and was compared to the Pauthenier limit for different supply voltages, and frequencies. MgO powder was used as a source of particles in these experiments. It was noticed that higher supply voltage of the charger gives higher level of particle charge, but at the same time, the particle deposition on the charger elements was increased, decreasing the particle penetration. A compromise between these two tendencies is therefore necessary. As a result we have proposed a criterion maximizing the total charge born by the particles which is a product of relative particle charge and particle penetration.  相似文献   

13.
核磁共振波谱是研究高聚物结构和动力学的有效手段,特别是固体高分辨NMR实验方法的不断发展及谱仪技术的进步,使这方面的研究不断深入. 文中简述了若干固体高分辨NMR技术在固态高聚物结构研究中的应用和重要进展. 部分实验工作在Varian UNITYplus 400MHz NMR谱仪的固体单元上完成.  相似文献   

14.
《Current Applied Physics》2019,19(7):794-803
Cobalt oxide and manganese oxides are promising electrode materials amongst the transition metal oxides (TMOs) for pseudocapacitors. The lack of reversibility and deterioration of capacitance at higher current densities is major flaw in Co3O4 as an electrode for supercapacitor while MnO2 suffers from low electrical conductivity and poor cycling stability. It is inevitable to bridge the performance gap between these two TMOs to obtain a high performance supercapacitor based on environmental benign and earth abundant materials. Herein, we fabricated a hybrid triple heterostructure high-performing supercapacitor based on hexagonal sheets of Co3O4, MnO2 nanowires and graphene oxide (GO) to form a composite structure of Co3O4/MnO2/GO by all hydrothermal synthesis route. The Co3O4 square sheets serves as an excellent backbone with good mechanical adhesion with the current collector providing a rapid electronic transfer channel while the integrated nanostructure of MnO2 NW/GO permits more electrolyte ions to penetrate capably into the hybrid structure and allows effective utilization of more active surface areas. A triple heterostructured device exhibits a high areal capacitance of 3087 mF cm−2 at 10 mV s−1 scan rate along with the exceptional rate capability and cycling stability having capacitance retention of ∼170% after 5000 charge/discharge cycles. The TMOs based pseudocapacitor with the conducting scaffolds anchoring based on graphene derivatives like this will pave an encouraging alternatives for next generation energy storage devices.  相似文献   

15.
随着固体NMR理论和谱仪硬件技术的不断发展,近年来固体NMR技术在高分子多尺度结构与动力学研究领域中正发挥着越来越重要的作用. 多脉冲及高速魔角旋转(MAS)等质子高分辨技术的发展使得高灵敏度的1H谱可有效地用于高分子化学结构与链间相互作用的检测;基于化学键(J-耦合)相关和通过空间(偶极耦合)相互作用的各种二维异核相关谱NMR新技术,使得复杂高分子的链结构得以严格解析. 基于MAS下同核和异核偶极-偶极相互作用、化学位移各向异性等各向异性相互作用重聚的系列新技术,使得研究者可在采用高分辨1H或13C 检测信号的同时检测准静态下的各向异性相互作用,进而获得与之密切相关的结构和动力学信息. 通过质子偶极滤波技术可有效检测多相聚合物中的界面相与相区尺寸、高分子共混物中的相容性等问题. 在动力学的研究中,通过质子间自旋扩散的有效压制技术和化学位移各向异性的重聚,目前已经可以有效地获取链段上单个化学键的快速局域运动以及链段的超慢分子运动. 上述丰富的多尺度NMR技术可以使研究者在不同空间和时间尺度上对高分子聚合物的微观结构、相分离和动力学行为等进行详细的研究,进而阐明高分子微观结构与宏观性能的关联. 该文以固体NMR中最主要的2类核(1H和13C)的检测技术为主线,简单介绍近年来固体NMR领域的一些最新研究进展及其在高分子结构和动力学研究中的应用.  相似文献   

16.
Fuqian Yang 《Physics letters. A》2019,383(20):2353-2360
The charge storage in an electrical double-layer capacitor is dependent on the accumulation of ions on the interface between electrolyte and conducting material and the spatial distribution of ions in electrolyte. In this work, we study the effect of local curvature on the concentration of ions on the interface between electrolyte and electrode from the framework of thermodynamics and incorporate the concentration of ions on the interface in the analysis of the spatial distribution of ions for symmetric binary electrolytes. Semi-analytical results of the integral electrical-double-layer capacitances per unit area under the condition of large Debye-Hückel constant are obtained for spherical particle and cylindrical rod, which reveal the contribution of interface energy between the conducting material and the electrolyte to the storage of charge. For spherical cavity and cylindrical pore at small electric potential, the solution of the electric potential for linearized Poisson-Boltzmann equation is used in the calculation of the integral electrical-double-layer capacitances per unit area, which are dependent on the sizes of the cavity and pore and independent of the interface energy between the conducting material and the electrolyte. For spherical cavity and cylindrical pore at large electric potential, the integral double-layer capacitances are dependent on the interface energy.  相似文献   

17.
In this study, a symmetric electrochemical capacitor was fabricated by adopting a lithium iron phosphate (LiFePO4)-activated carbon (AC) composite as the core electrode material in 1.0 M Na2SO3 and 1.0 M Li2SO4 aqueous electrolyte solutions. The composite electrodes were prepared via a facile mechanical mixing process. The structural properties of the nanocomposite electrodes were characterised by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analysis. The electrochemical performances of the prepared composite electrode were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that a maximum specific capacitance of 112.41 F/g was obtained a 40 wt% LiFePO4 loading on an AC electrode compared with that of a pure AC electrode (76.24 F/g) in 1 M Na2SO3. The improvement in the capacitive performance of the 40 wt% LiFePO4–AC composite electrode is believed to be attributed to the contribution of the synergistic effect of the electric double layer capacitance (EDLC) of the AC electrode and pseudocapacitance via the intercalation/extraction of H+, OH, Na+ and SO32− and Li+ ions in LiFePO4 lattices. In contrast, it appears that the incorporation of LiFePO4 into AC electrodes does not increase the charge storage capability when Li2SO4 is used as the electrolyte. This behaviour can be explained by the fact that the electrolyte system containing SO42− only exhibits EDLC in the Fe-based electrodes. Additionally, Li+ ions that have lower conductivity and mobility may lead to poorer charge storage capability compared to Na+ ions. Overall, the results reveal that the AC composite electrodes with 40 wt% LiFePO4 loading on a Na2SO3 neutral electrolyte exhibit high cycling stability and reversibility and thus display great potential for electrochemical capacitor applications.  相似文献   

18.
Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time–temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as “microwave” heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR.  相似文献   

19.
20.
陈钢进  饶成平  肖慧明  黄华  赵延海 《物理学报》2015,64(23):237702-237702
本文报道一种基于双层介质界面极化机理的新型驻极体注极技术: 借助辅助层对PP薄膜进行注极. 采用表面电位测试方法考察了注极温度、注极电压对所获PP薄膜驻极体电荷存储性能的影响, 并利用热刺激放电技术研究了其高温电荷存储性能, 同时测试了PP薄膜驻极体在X和Y方向的静电场分布. 结果表明: 界面极化注极是一种比电晕注极更为优异的驻极体形成方法. 在一定温度下, 驻极体表面电位随注极电压的增加而增加, 而且两者呈线性关系, 这一结果与注极过程的电荷积聚方程的分析完全一致. 注极温度的影响研究表明, 在保持注极电压不变(注极电压范围为0.5–3.0 kV)的情况下, 温度低于75 ℃时, 温度的变化对于注极效果的影响不明显; 当注极温度大于75 ℃ 时, PP薄膜驻极体的表面电位随注极温度的增加而增加. 表面电位随时间的变化研究表明, PP薄膜驻极体具有良好的电荷存储稳定性. 对其表面电位分布的测试表明, 界面极化注极所形成的PP薄膜驻极体呈现均匀的静电场分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号