首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Auration of o-trimethylsilyl arylphosphines leads to the formation of gold and gold–silver clusters with ortho-metalated phosphines displaying 3c–2e Au−C−M bonds (M=Au/Ag). Hexagold clusters [Au6L4](X)2 are obtained by reaction of (L−TMS)AuCl with AgX, whereas reaction with AgX and Ag2O leads to gold–silver clusters [Au4Ag2L4](X)2. Oxo-trigold(I) species [Au3O]+ were identified as the intermediates in the formation of the silver-doped clusters. Other [Au5], [Au4Ag], and [Au12Ag4] clusters were also obtained. Clusters containing PAu−Au−AuP structural motif display good catalytic activity in the activation of alkynes under homogeneous conditions.  相似文献   

2.
《Polyhedron》2005,24(5):685-691
The in situ measurements of infrared spectra and the Ag K-edge EXAFS spectra of the fully Ag+ exchanged zeolite X (Ag86–X) were carried out from room temperature to 300 °C under vacuum. By evacuation at room temperature the O–H stretch vibration (ν(O–H)) mode around 3 μm disappears and the coordination number of oxygen around Ag, NAg–O, decreases due to removal of water molecules. The T–O asymmetric stretch (νas(T–O)) mode associated with zeolite framework oxygen appears around 10 μm. These infrared spectra are fitted by summing up Gaussian peaks. The positions of the main two peaks are 1000 and 1100 cm−1 at room temperature. At 100 °C, a third infrared peak appears at around 955 cm−1, the total NAg–O becomes small and the coordination number of Ag around Ag, NAg–Ag, is 0.5. These results suggest that Ag atoms change sites in the zeolite and play an important role as a precursor of the Ag clusters. At 300 °C, the peaks around 1000 and 1100 cm−1 shift to 1050 and 1140 cm−1, respectively, and NAg–Ag becomes 2.9, which indicates that the Ag clusters attached to the zeolite framework are stabilized at high temperature. When the zeolite with Ag clusters is exposed to atmosphere, it is found that: (1) the ν(O–H) mode around 3 μm appears again, (2) there are two main peaks (1000 and 1100 cm−1) and a small peak around 856 cm−1 and (3) the local structure of the Ag clusters formed at 300 °C never reverses.  相似文献   

3.
The [AuxAg16-x(SAdm)8(Dppe)2] nanocluster with aggregation-induced emission (AIE) was synthesized from a non-fluorescent [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 nanocluster via a ligand-exchange engineering (Dppe=1,2-Bis(diphenylphosphino)ethane, Dppm=Bis(diphenylphosphino)methane, HSAdm=1-Adamantanethiol). The nanocluster has a Au-doped icosahedral AuxAg13-x core, capped by two Ag(SR)3, one Ag(SR)2 and two Dppe ligands. By changing the achiral Dppe ligand into a chiral dbpb ligand ((2S,3S)-(-)-Bis(diphenylphosphino)butane or (2R,3R)-(+)-2,3-Bis(diphenylphosphino)butane), chiral nanoclusters are obtained. ESI-MS and UV-vis spectroscopy were performed to track the reaction. This work provides guidance for the construction of new clusters by etching clusters with multidentate phosphine ligands.  相似文献   

4.
The involvement of silver in two-electron AgI/AgIII processes is currently emerging. However, the range of stability of the required and uncommon AgIII species is virtually unknown. Here, the stability of AgIII towards the whole set of halide ligands in the organosilver(III) complex frame [(CF3)3AgX] (X=F, Cl, Br, I, At) is theoretically analyzed. The results obtained depend on a single factor: the nature of X. Even the softest and least electronegative halides (I and At) are found to form reasonably stable AgIII−X bonds. Our estimates were confirmed by experiment. The whole series of nonradiative halide complexes [PPh4][(CF3)3AgX] (X=F, Cl, Br, I) has been experimentally prepared and all its constituents have been isolated in pure form. The pseudohalides [PPh4][(CF3)3AgCN] and [PPh4][(CF3)3Ag(N3)] have also been isolated, the latter being the first silver(III) azido complex. Except for the iodo compound, all the crystal and molecular structures have been established by single-crystal X-ray diffraction methods. The decomposition paths of the [(CF3)3AgX] entities at the unimolecular level have been examined in the gas phase by multistage mass spectrometry (MSn). The experimental detection of the two series of mixed complexes [CF3AgX] and [FAgX] arising from the corresponding parent species [(CF3)3AgX] demonstrate that the Ag−X bond is particularly robust. Our experimental observations are rationalized with the aid of theoretical methods. Smooth variation with the electronegativity of X is also observed in the thermolyses of bulk samples. The thermal stability in the solid state gradually decreases from X=F (145 °C, dec.) to X=I (78 °C, dec.) The experimentally established compatibility of AgIII with the heaviest halides is of particular relevance to silver-mediated or silver-catalyzed processes.  相似文献   

5.
Fragmentation dynamics of ligated coinage metal clusters reflects their structural and bonding properties. So far methodological challenges limited probing structures of the fragments. Herein, we resolve the geometric structures of the primary fragments of [Ag29L12]3−, i.e. [Ag24L9]2−, [Ag19L6] and [Ag5L3] (L is 1,3-benzene dithiolate). For this, we used trapped ion mobility mass spectrometry to determine collision cross sections of the fragments and compared them to structures calculated by density functional theory. We also report that following two sequential [Ag5L3] elimination steps, further dissociation of [Ag19L6] also involves a new channel of Ag2 loss and Ag−S and C−S bond cleavages. This reflects a competition between retaining the electronic stability of 8 e superatom cluster cores and increasing steric strain of ligands and staples. These results are also of potential interest for future soft-landing deposition studies aimed at probing catalytic behavior of Ag clusters on supports.  相似文献   

6.
7.
The structures and relative stabilities of high‐spin n+1Aun?1Ag and nAun?1Ag+ (n = 2–8) clusters have been studied with density functional calculation. We predicted the existence of a number of previously unknown isomers. Our results revealed that all structures of high‐spin neutral or cationic Aun?1Ag clusters can be understood as a substitution of an Au atom by an Ag atom in the high‐spin neutral or cationic Aun clusters. The properties of mixed gold–silver clusters are strongly sized and structural dependence. The high‐spin bimetallic clusters tend to be holding three‐dimensional geometry rather than planar form represented in their low‐spin situations. Silver atom prefers to occupy those peripheral positions until to n = 8 for high‐spin clusters, which is different from its position occupied by light atom in the low‐spin situations. Our theoretical calculations indicated that in various high‐spin Aun?1Ag neutral and cationic species, 5Au3Ag, 3AuAg and 5Au4Ag+ hold high stability, which can be explained by valence bond theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

8.
The X-ray structural study of the reaction product of equimolar amounts of [Au3Cu2(C2Ph)6]. [{Au(C2Ph)} n ], and [Ag(C2Ph)} n ] revealed two bimetallic anionic [N(PPh3)2] + [Au3Ag2(C2Ph)6] and [N(PPh3)2]+[Au3Cu2 (C2 Pg)6] — clusters co-crystallized in one asymmetric unit. Each cluster has trigonal bipyramidal geometry with three gold atoms occupying equatorial planes and two silver or copper atoms in the apical positions. Our earlier conclusion based upon spectroscopic characterization describing the product of be above reaction as trimetallic cluster containing three coinage-metals with an overall composition [Au3CuAg(C2Ph)6], was erroneous.Presented at the 210th ACS Meeting, August 19–24, 1995, Chicago, Illinois.  相似文献   

9.
The recently-increasing interest in coinage metal clusters stems from their photophysical properties, which are controlled via heterometallation. Herein, we report homometallic AgI46S13 clusters protected by octahedral fac-[Ir(aet)3] (aet=2-aminoethanethiolate) molecules and their conversion to heterometallic AgI43MI3S13 (M=Cu, Au) clusters. The reactions of fac-[Ir(aet)3] with Ag+ and penicillamine produced [Ag46S13{Ir(aet)3}14]20+ ([ 1 ]20+), where a spherical AgI46S13 cluster is covered by fac-[Ir(aet)3] octahedra through thiolato bridges. [ 1 ]20+ was converted to [Ag43M3S13{Ir(aet)3}14]20+ ([ 1M ]20+) with an AgI43MI3S13 cluster by treatment with M+, retaining its overall structure. [ 1 ]20+ was photoluminescent and had an emission band ca. 690 nm that originated from an S-to-Ag charge transfer. While [ 1Cu ]20+ showed an emission band with a slightly higher energy of ca. 650 nm and a lower quantum yield, the emission band for [ 1Au ]20+ shifted to a much higher energy of ca. 590 nm with an enhanced quantum yield.  相似文献   

10.
Ligands play an important role in determining the atomic arrangement within the metal nanoclusters. Here, we report a new nanocluster [Au23?xAgx(S‐Adm)15] protected by bulky adamantanethiol ligands which was obtained through a one‐pot synthesis. The total structure of [Au23?xAgx(S‐Adm)15] comprises an Au13?xAgx icosahedral core, three Au3(SR)4 units, and one AgS3 staple motif in contrast to the 15‐atom bipyramidal core previously seen in [Au23?xAgx(SR)16]. UV/Vis spectroscopy indicates that the HOMO–LUMO gap of [Au23?xAgx(S‐Adm)15] is 1.5 eV. DFT calculations reveal that [Au19Ag4(S‐Adm)15] is the most stable structure among all structural possibilities. Benefitting from Ag doping, [Au23?xAgx(S‐Adm)15] exhibits drastically improved photocatalytic activity for the degradation of rhodamine B (RhB) and phenol under visible‐light irradiation compared to Au23 nanoclusters.  相似文献   

11.
《Comptes Rendus Chimie》2016,19(5):579-584
The structures and properties of different gold and silver mixed-metal trinuclear complexes, [AunAgm(HNCOH)3] (m + n = 3), were investigated theoretically. The computed properties were compared with those of the [Au3(HNCOH)3] complex. The geometries of all complexes were optimized at the B3LYP level of theory using the GEN basis set. The optimization results revealed that the most stable structures of pure Au and Ag complexes are almost similar. In addition, all complexes are flat and highly symmetric. It was shown that the silver substitution had a significant influence on the electronic properties. The metal–metal distances were in the order of: Au–Au < Au–Ag < Ag–Ag. The ionization potential and hardness were found to be decreased while the electron affinity, HOMO–LUMO gap and chemical potential were found to be increased from the [Au3(HNCOH)3] to the [Ag3(HNCOH)3] complex. The [Au3(HNCOH)3] complex was the least reactive in the studied series with the electronic chemical potential equal to −3.98 eV. On the other hand, the value of the chemical potential characterizing the most reactive complex, [Ag3(HNCOH)3], was −3.80 eV.  相似文献   

12.
First principles electrodyanmics and quantum chemical simulations are performed to gain insights into the underlying mechanisms of the surface enhanced Raman spectra of 22BPY adsorbed on pure Au and Ag as well as on Au–Ag alloy nanodiscs. Experimental SERS spectra from Au and Ag nanodiscs show similar peaks, whereas those from Au–Ag alloy reveal new spectral features. The physical enhancement factors due to surface nano-texture were considered by numerical FDTD simulations of light intensity distribution for the nano-textured Au, Ag, and Au–Ag alloy and compared with experimental results. For the chemical insights of the enhancement, the DFT calculations with the dispersion interaction were performed using Au20, Ag20, and Au10Ag10 clusters of a pyramidal structure for SERS modeling. Binding of 22BPY to the clusters was simulated by considering possible arrangements of vertex and planar physical as well as chemical adsorption models. The DFT results indicate that 22BPY prefers a coplanar adsorption on a (111) face with trans-conformation having close energy difference to cis-conformation. Binding to pure Au cluster is stronger than to pure Ag or Au–Ag alloy clusters and adsorption onto the alloy surface can deform the surface. The computed Raman spectra are compared with experimental data and assignments for pure Au and Ag models are well matching, indicating the need of dispersion interaction to reproduce strong Raman signal at around 800 cm–1. This work provides insight into 3D character of SERS on nanorough surfaces due to different binding energies and bond length of nanoalloys. © 2018 Wiley Periodicals, Inc.  相似文献   

13.
As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of C−H hydrogen bonds have been well-studied, much less is known about the R3N+−C−H⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of 1H NMR experiments detailing R3N+−C−H⋅⋅⋅X (X=O, N) hydrogen bonds are described.  相似文献   

14.
The resonance character of Cu/Ag/Au bonding is investigated in B???M?X (M=Cu, Ag, Au; X=F, Cl, Br, CH3, CF3; B=CO, H2O, H2S, C2H2, C2H4) complexes. The natural bond orbital/natural resonance theory results strongly support the general resonance‐type three‐center/four‐electron (3c/4e) picture of Cu/Ag/Au bonding, B:M?X?B+?M:X?, which mainly arises from hyperconjugation interactions. On the basis of such resonance‐type bonding mechanisms, the ligand effects in the more strongly bound OC???M?X series are analyzed, and distinct competition between CO and the axial ligand X is observed. This competitive bonding picture directly explains why CO in OC???Au?CF3 can be readily replaced by a number of other ligands. Additionally, conservation of the bond order indicates that the idealized relationship bB???M+bMX=1 should be suitably generalized for intermolecular bonding, especially if there is additional partial multiple bonding at one end of the 3c/4e hyperbonded triad.  相似文献   

15.
The rod‐shaped Au25 nanocluster possesses a low photoluminescence quantum yield (QY=0.1 %) and hence is not of practical use in bioimaging and related applications. Herein, we show that substituting silver atoms for gold in the 25‐atom matrix can drastically enhance the photoluminescence. The obtained AgxAu25?x (x=1–13) nanoclusters exhibit high quantum yield (QY=40.1 %), which is in striking contrast with the normally weakly luminescent AgxAu25?x species (x=1–12, QY=0.21 %). X‐ray crystallography further determines the substitution sites of Ag atoms in the AgxAu25?x cluster through partial occupancy analysis, which provides further insight into the mechanism of photoluminescence enhancement.  相似文献   

16.
The reaction of new dinuclear gold(I) organometallic complexes containing mesityl ligands and bridging bidentate phosphanes [Au2(mes)2(μ‐LL)] (LL=dppe: 1,2‐bis(diphenylphosphano)ethane 1 a , and water‐soluble dppy: 1,2‐bis(di‐3‐pyridylphosphano)ethane 1 b ) with Ag+ and Cu+ lead to the formation of a family of heterometallic clusters with mesityl bridging ligands of the general formula [Au2M(μ‐mes)2(μ‐LL)][A] (M=Ag, A=ClO4?, LL=dppe 2 a , dppy 2 b ; M=Ag, A=SO3CF3?, LL=dppe 3 a , dppy 3 b ; M=Cu, A=PF6?, LL=dppe 4 a , dppy 4 b ). The new compounds were characterized by different spectroscopic techniques and mass spectrometry The crystal structures of [Au2(mes)2(μ‐dppy)] ( 1 b ) and [Au2Ag(μ‐mes)2(μ‐dppe)][SO3CF3] ( 3 a ) were determined by a single‐crystal X‐ray diffraction study. 3 a in solid state is not a cyclic trinuclear Au2Ag derivative but it gives an open polymeric structure instead, with the {Au2(μ‐dppe)} fragments “linked” by {Ag(μ‐mes)2} units. The very short distances of 2.7559(6) Å (Au? Ag) and 2.9229(8) Å (Au? Au) are indicative of gold–silver (metallophilic) and aurophilic interactions. A systematic study of their luminescence properties revealed that all compounds are brightly luminescent in solid state, at room temperature (RT) and at 77 K, or in frozen DMSO solutions with lifetimes in the microsecond range and probably due to the self‐aggregation of [Au2M(μ‐mes)2(μ‐LL)]+ units (M=Ag or Cu; LL=dppe or dppy) into an extended chain structure, through Au? Au and/or Au? M metallophilic interactions, as that observed for 3 a . In solid state the heterometallic Au2M complexes with dppe ( 2 a – 4 a ) show a shift of emission maxima (from ca. 430 to the range of 520‐540 nm) as compared to the parent dinuclear organometallic product 1 a while the complexes with dppy ( 2 b–4 b ) display a more moderate shift (505 for 1 b to a max of 563 nm for 4 b ). More importantly, compound [Au2Ag(μ‐mes)2(μ‐dppy)]ClO4 ( 2 b ) resulted luminescent in diluted DMSO solution at room temperature. Previously reported compound [Au2Cl2(μ‐LL)] (LL dppy 5 b ) was also studied for comparative purposes. The antimicrobial activity of 1–5 and Ag[A] (A=ClO4?, SO3CF3?) against Gram‐positive and Gram‐negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au2M derivatives with dppe ( 2 a – 4 a ) were the more active (minimum inhibitory concentration 10 to 1 μg mL?1). Compounds containing silver were ten times more active to Gram‐negative bacteria than the parent dinuclear compound 1 a or silver salts. Au2Ag compounds with dppy ( 2 b , 3 b ) were also potent against fungi.  相似文献   

17.
High‐level incorporation of Ag in Au nanoclusters (NCs) is conveniently achieved by controlling the concentration of Ag+ in the synthesis of bovine serum albumin (BSA)‐protected Au NCs, and the resulting structure is determined to be bimetallic Ag28Au10‐BSA NCs through a series of characterizations including energy‐dispersive X‐ray spectroscopy, mass spectroscopy, and X‐ray photoelectron spectroscopy, together with density functional theory simulations. Interestingly, the Ag28Au10 NCs exhibit a significant fluorescence redshift rather than quenching upon interaction with hydrogen peroxide, providing a new approach to the detection of hydrogen peroxide through direct comparison of their fluorescence peaks. Furthermore, the Ag28Au10 NCs are also used for the sensitive and selective detection of herbicide through fluorescence enhancement. The detection limit for herbicide (0.1 nm ) is far below the health value established by the U.S. Environmental Protection Agency; such sensitive detection was not achieved by using AuAg NCs with low‐level incorporation of Ag or by using the individual metal NCs.  相似文献   

18.
The high‐dimensional (that is, three‐dimensional (3D)) assembly of nanomaterials is an effective means of improving their properties; however, achieving this assembly at the atomic level remains challenging. Herein, we obtained a novel nanocluster, [Au8Ag57(Dppp)4(C6H11S)32Cl2]Cl (Dppp=1,3‐bis(diphenylphosphino)propane) showing a 3D octameric assembly mode involving the kernel penetration of eight complete icosahedral Au@Ag10Au2 units for the first time. The atomically precise structure was determined by single‐crystal X‐ray diffraction, and further confirmed by thermogravimetric analysis, X‐ray photoelectron spectroscopy, and electrospray ionization mass spectrometry measurements. Furthermore, ligand‐induced transformation prompted the conversion of [Au8Ag57(Dppp)4(C6H11S)32Cl2]Cl, with complete octameric fusion into [Au8Ag55(Dppp)4(C6H11S)34][BPh4]2, with incomplete octameric fusion. These observations will hopefully facilitate further research on the assembly of M13 nanobuilding blocks.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号