首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sulfur(VI) fluoride exchange (SuFEx) is a new family of click chemistry based transformations that enable the synthesis of covalently linked modules via SVI hubs. Here we report thionyl tetrafluoride (SOF4) as the first multidimensional SuFEx connector. SOF4 sits between the commercially mass‐produced gases SF6 and SO2F2, and like them, is readily synthesized on scale. Under SuFEx catalysis conditions, SOF4 reliably seeks out primary amino groups [R‐ NH2 ] and becomes permanently anchored via a tetrahedral iminosulfur(VI) link: R−N=(O=)S(F)2. The pendant, prochiral difluoride groups R−N=(O=) SF2 , in turn, offer two further SuFExable handles, which can be sequentially exchanged to create 3‐dimensional covalent departure vectors from the tetrahedral sulfur(VI) hub.  相似文献   

2.
Thionyl tetrafluoride (SOF4) is a valuable connective gas for sulfur fluoride exchange (SuFEx) click chemistry that enables multidimensional linkages to be created via sulfur–oxygen and sulfur–nitrogen bonds. Herein, we expand the available SuFEx chemistry of SOF4 to include organolithium nucleophiles, and demonstrate, for the first time, the controlled projection of sulfur–carbon links at the sulfur center of SOF4‐derived iminosulfur oxydifluorides (R1−N=SOF2). This method provides rapid and modular access to sulfonimidoyl fluorides (R1−N=SOFR2), another array of versatile SuFEx connectors with readily tunable reactivity of the S−F handle. Divergent connections derived from these valuable sulfonimidoyl fluoride units are also demonstrated, including the synthesis of sulfoximines, sulfonimidamides, and sulfonimidates.  相似文献   

3.
Thionyl tetrafluoride (SOF4) is a valuable connective gas for sulfur fluoride exchange (SuFEx) click chemistry that enables multidimensional linkages to be created via sulfur–oxygen and sulfur–nitrogen bonds. Herein, we expand the available SuFEx chemistry of SOF4 to include organolithium nucleophiles, and demonstrate, for the first time, the controlled projection of sulfur–carbon links at the sulfur center of SOF4‐derived iminosulfur oxydifluorides (R1?N=SOF2). This method provides rapid and modular access to sulfonimidoyl fluorides (R1?N=SOFR2), another array of versatile SuFEx connectors with readily tunable reactivity of the S?F handle. Divergent connections derived from these valuable sulfonimidoyl fluoride units are also demonstrated, including the synthesis of sulfoximines, sulfonimidamides, and sulfonimidates.  相似文献   

4.
We report here the development of a suite of biocompatible SuFEx transformations from the SOF4‐derived iminosulfur oxydifluoride hub in aqueous buffer conditions. These biocompatible SuFEx reactions of iminosulfur oxydifluorides (R‐N=SOF2) with primary amines give sulfamides (8 examples, up to 98 %), while the reaction with secondary amines furnish sulfuramidimidoyl fluoride products (8 examples, up to 97 %). Likewise, under mild buffered conditions, phenols react with the iminosulfur oxydifluorides (Ar‐N=SOF2) to produce sulfurofluoridoimidates (13 examples, up to 99 %), which can themselves be further modified by nucleophiles. These transformations open the potential for asymmetric and trisubstituted linkages projecting from the sulfur(VI) center, including versatile S?N and S?O connectivity (9 examples, up to 94 %). Finally, the SuFEx bioconjugation of iminosulfur oxydifluorides to amine‐tagged single‐stranded DNA and to BSA protein demonstrate the potential of SOF4‐derived SuFEx click chemistry in biological applications.  相似文献   

5.
Polymer brushes present a unique architecture for tailoring surface functionalities due to their distinctive physicochemical properties. However, the polymerization chemistries used to grow brushes place limitations on the monomers that can be grown directly from the surface. Several forms of click chemistry have previously been used to modify polymer brushes by postpolymerization modification with high efficiency, however, it is usually difficult to include the unprotected moieties in the original monomer. We present the use of a new form of click chemistry known as SuFEx (sulfur(VI) fluoride exchange), which allows a silyl ether to be rapidly and quantitatively clicked to a polymer brush grown by free‐radical polymerization containing native ‐SO2F groups with rapid pseudo‐first‐order rates as high as 0.04 s?1. Furthermore, we demonstrate the use of SuFEx to facilely add a variety of other chemical functional groups to brush substrates that have highly useful and orthogonal reactivity, including alkynes, thiols, and dienes.  相似文献   

6.
New forms of click chemistry present new opportunities in materials science. Sulfur(VI) fluoride exchange (SuFEx) is a recently discovered click reaction between molecules containing SOxF groups and silyl ethers, two functionalities that are orthogonal to all other known click chemistries, that generates sulfate or sulfonate connections upon the addition of certain organobases or fluoride sources. SuFEx also has several important advantages over other click reactions in that it is insensitive to ambient oxygen and water, and its precursor materials, especially SOxF, are chemically, UV, and thermally inert. This Concept article focuses on the unique reactivity of SuFEx and its relation to building high molecular weight polymers and surface coatings, both of which make it a powerful new tool for materials science.  相似文献   

7.
We present the synthesis of 1,1-bis(fluorosulfonyl)-2-(pyridin-1-ium-1-yl)ethan-1-ide, a bench-stable precursor to ethene-1,1-disulfonyl difluoride (EDSF). The novel SuFEx reagent, EDSF, is demonstrated in the preparation of 26 unique 1,1-bissulfonylfluoride substituted cyclobutenes via a cycloaddition reaction. The regioselective click cycloaddition reaction is rapid, straightforward, and highly efficient, enabling the generation of highly functionalized 4-membered ring (4MR) carbocycles. These carbocycles are valuable structural motifs found in numerous bioactive natural products and pharmaceutically relevant small molecules. Additionally, we showcase diversification of the novel cyclobutene cores through selective Cs2CO3-activated SuFEx click chemistry between a single S−F group and an aryl alcohol, yielding the corresponding sulfonate ester products with high efficiency. Finally, density functional theory calculations offer mechanistic insights about the reaction pathway.  相似文献   

8.
《中国化学快报》2021,32(12):4029-4032
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides (ESFs) was successfully developed, this protocol provided an efficient and facile method to a wide range of chiral pyrrolidine-3-sulfonyl fluorides with good to excellent results (up to 87% yield, >20:1 dr, 94% ee). Some other chiral sulfonyl derivatives, such as sulfonamide and sulfonate, were easily accessible through simple transformations with high yields, which demonstrated that the cycloaddition products could be synthetically useful in the sulfur(VI) fluoride exchange (SuFEx) chemistry.  相似文献   

9.
Pentafluorosulfanylamines and Sulfanylammonium Salts . From the addition of HF to sulfurtetrafluorideimides N-alkylpentafluorosulfanylamines RNHSF5(2a, 2b: R=CH3, C2H5) are obtained in quantitative yield. N, N-dialkylpentafluorosuIfanylamines Et2NSF5(5a) and pip-SF5 (5b) are isolated from the reaction of the appropriate sulfurdifluoronitridearnides NSF2NR2 and HF/SF4. Protonation of the amines with the superacidic system HF/AsF5 gives stable pentafluorosulfanyl-ammonium salts SF5NHRR′. AsF6 (12: R = R′ = CH3; 14: R=R′=H; 10: R=CH3, R′ = H). Under the same conditions the adduct AsF5· NSF2CF(CF3)2 (15) forms a cation with hexacoordinated sulfur (trans-H3NSF4CF(CF3)2?AsF66: 16), while with Asp5 · NSF2NMe2 (17) the reaction stops at tetracoordination (HNSF2NMe2+AsF6 : 18).  相似文献   

10.
SuFEx is a new‐generation click chemistry transformation that exploits the unique properties of S?F bonds and their ability to undergo near‐perfect reactions with nucleophiles. We report here the first SuFEx‐based procedure for the efficient synthesis of pharmaceutically important triflones and bis(trifluoromethyl)sulfur oxyimines from sulfonyl fluorides and iminosulfur oxydifluorides, respectively. The new process involves rapid S?F exchange with trifluoromethyltrimethylsilane (TMSCF3) upon activation by potassium bifluoride in anhydrous DMSO. The reaction tolerates a wide selection of substrates and proceeds under mild conditions without need for chromatographic purification. A tentative mechanism is proposed involving nucleophilic displacement of S?F by the trifluoromethyl anion via a five‐coordinate intermediate. The utility of late‐stage SuFEx trifluoromethylation is demonstrated through the synthesis and selective anticancer properties of a bis(trifluoromethyl)sulfur oxyimine.  相似文献   

11.
Thiazyltrifluoride NSF3 and Thiazyldifluoridedimethylamide NSF2NMe2: Ligands in Organometallic Chemistry From the reaction of [Re(CO)5SO2]+AsF6? ( 1 ) and [CpFe(CO)2SO2]+AsF6? ( 6 ) with NSF3 ( 2 ) and NSF2NMe2 ( 4 ) the complexes [Re(CO)5NSF3]+AsF6? ( 3 ), [Re(CO)5NSF2NMe2]+AsF6? ( 5 ), [CpFe(CO)2NSF3]+AsF6? ( 7 ), and [CpFe(CO)2NSF2NMe2]+AsF6? ( 8 ) were obtained. The compounds have been characterised by X-ray crystallography, the ligand properties of 2 and 4 are discussed.  相似文献   

12.
A Heck–Matsuda process for the synthesis of the otherwise difficult to access compounds, β‐arylethenesulfonyl fluorides, is described. Ethenesulfonyl fluoride (i.e., vinylsulfonyl fluoride, or ESF) undergoes β‐arylation with stable and readily prepared arenediazonium tetrafluoroborates in the presence of the catalyst palladium(II) acetate to afford the E‐isomer sulfonyl analogues of cinnamoyl fluoride in 43–97 % yield. The β‐arylethenesulfonyl fluorides are found to be selectively addressable bis‐electrophiles for sulfur(VI) fluoride exchange (SuFEx) click chemistry, in which either the alkenyl moiety or the sulfonyl fluoride group can be the exclusive site of nucleophilic attack under defined conditions, making these rather simple cores attractive for covalent drug discovery.  相似文献   

13.
Sulfur(vi) Fluoride Exchange (SuFEx) chemistry has emerged as a next-generation click reaction, designed to assemble functional molecules quickly and modularly. Here, we report the ex situ generation of trifluoromethanesulfonyl fluoride (CF3SO2F) gas in a two chamber system, and its use as a new SuFEx handle to efficiently synthesize triflates and triflamides. This broadly tolerated protocol lends itself to peptide modification or to telescoping into coupling reactions. Moreover, redesigning the SVI–F connector with a S Created by potrace 1.16, written by Peter Selinger 2001-2019 O → S Created by potrace 1.16, written by Peter Selinger 2001-2019 NR replacement furnished the analogous triflimidoyl fluorides as SuFEx electrophiles, which were engaged in the synthesis of rarely reported triflimidate esters. Notably, experiments showed H2O to be the key towards achieving chemoselective trifluoromethanesulfonation of phenols vs. amine groups, a phenomenon best explained—using ab initio metadynamics simulations—by a hydrogen bonded termolecular transition state for the CF3SO2F triflylation of amines.

Triflyl fluoride gas (CF3SO2F) and its aza analogues are reported as new SuFEx activators. These SVI–F reagents react efficiently with a variety of nucleophiles, yet the presence of water grants complete chemoselectivity to phenols.  相似文献   

14.
On the Lewis Acidity of Fluorinated Sulfonium Ions NMR investigations show, that sulfonium salts [(CF3)nSF3?n]+ AsF6? ( 1–3 , n = 0–2) add CH3CN under formation of ψ-pentacoordinated sulfuranonium ions [(CF3)nSF3?n · NCCH3]+ ( 1a – 3a ,) with the donor in an axial position. In solution NSF3 ( 4 ,) forms similar salts [(CF3)nSF3?n · NSF3]+ AsF6? ( 1b-3b ,) with weaker donor-acceptor interactions. With NSF2NMe2 ( 5 ,) the step of the primary addition products is passed very quickly, by fluoride-migration from 1 , and 2 , persulfuranonium ions [(CH3)2NSF3NSF2]+ ( 6 ,) and [(CH3)2NSF3NSFCF3]+ ( 7 ,), respectively, are formed, while from 3 , only decomposition products (Me2NSF2+, CF3SSCF3, CF4) were obtained.  相似文献   

15.
Ligand coupling on hypervalent main group elements has emerged as a pivotal methodology for the synthesis of functionalized N-heteroaromatic compounds in recent years due to the avoidance of transition metals and the mildness of the reaction conditions. In this direction, the reaction of N-heteroaryl sulfur(IV) and N-heteroaryl phosphorus(V) compounds has been well studied. However, the ligand coupling of sulfur(VI) is still underdeveloped and the reaction of alkyl N-heteroarylsulfones is still elusive, which does not match the high status of sulfones as the chemical chameleons in organic synthesis. Here we present a ligand coupling-enabled formal SO2 extrusion of fluoroalkyl 2-azaheteroarylsulfones under the promotion of Grignard reagents, which not only enriches the chemistry of sulfones, but also provides a novel and practical synthetic tool towards N-heteroaromatic fluoroalkylation.  相似文献   

16.
A novel trithiocarbonate reversible addition−fragmentation chain transfer (RAFT) reagent, 3-azidopropyl (4-[fluorosulfonyl]benzyl)trithiocarbonate (Az-FSBCT), which has both clickable azidopropyl and sulfonyl fluoride moieties, was designed and synthesized. Using the RAFT agent Az-FSBCT and triethylboron as an initiator, well-defined poly(N-vinylpyrrolidone) (PVP), in which the azide and sulfonyl fluoride groups are at the α and ω positions of the polymer chains, were prepared without prior deoxygenation at room temperature. Moreover, the possibilities for the construction of new functionalized polymers were also demonstrated by a “click” copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and sulfur(VI)-fluoride exchange (SuFEx) postreaction using these terminal functional PVPs.  相似文献   

17.
The new electrophilic trifluoromethylating 1‐(trifluoromethyl)‐benziodoxole reagents A and B (Scheme 1) have been used to selectively attach CF3 groups to the S‐atom of cysteine side chains of α‐ and β‐peptides (up to 13‐residues‐long; products 7 – 14 ). Other functional groups in the substrates (amino, amido, carbamate, carboxylate, hydroxy, phenyl) are not attacked by these soft reagents. Depending on the conditions, the indole ring of a Trp residue may also be trifluoromethylated (in the 2‐position). The products are purified by chromatography, and identified by 1H‐, 13C‐, and 19F‐NMR spectroscopy, by CD spectroscopy, and by high‐resolution mass spectrometry. The CF3 groups, thus introduced, may be replaced by H (Na/NH3), an overall Cys/Ala conversion. The importance of trifluoromethylations in medicinal chemistry and possible applications of the method (spin‐labelling, imaging, PET) are discussed.  相似文献   

18.
A convenient protocol to selectively access various arylsulfur(VI) fluorides from commercially available aryl halides in a divergent fashion is presented. Firstly, a novel sulfenylation reaction with the electrophilic N-(chlorothio)phthalimide (Cl-S-Phth) and arylzinc reagents afforded the corresponding Ar-S-Phth compounds. Subsequently, the S(II) atom was selectively oxidized to distinct fluorinated sulfur(VI) compounds under mild conditions. Slight modifications on the oxidation protocol permit the chemoselective installation of 1, 3, or 4 fluorine atoms at the S(VI) center, affording the corresponding Ar-SO2F, Ar-SOF3, and Ar-SF4Cl. Of notice, this strategy enables the effective introduction of the rare and underexplored -SOF3 moiety into various (hetero)aryl groups. Reactivity studies demonstrate that such elusive Ar-SOF3 can be utilized as a linchpin for the synthesis of highly coveted aryl sulfonimidoyl fluorides (Ar-SO(NR)F).  相似文献   

19.
Vanadium chemistry is of interest due its biological relevance and medical applications. In particular, the interactions of high‐valent vanadium ions with sulfur‐containing biologically important molecules, such as cysteine and glutathione, might be related to the redox conversion of vanadium in ascidians, the function of amavadin (a vanadium‐containing anion) and the antidiabetic behaviour of vanadium compounds. A mechanistic understanding of these aspects is important. In an effort to investigate high‐valent vanadium–sulfur chemistry, we have synthesized and characterized the non‐oxo divanadium(IV) complex salt tetraphenylphosphonium tri‐μ‐<!?tlsb=‐0.11pt>methanolato‐κ6O:O‐bis({tris[2‐sulfanidyl‐3‐(trimethylsilyl)phenyl]phosphane‐κ4P,S,S′,S′′}vanadium(IV)) methanol disolvate, (C24H20P)[VIV2(μ‐OCH3)3(C27H36PS3)2]·2CH3OH. Two VIV metal centres are bridged by three methanolate ligands, giving a C2‐symmetric V2(μ‐OMe)3 core structure. Each VIV centre adopts a monocapped trigonal antiprismatic geometry, with the P atom situated in the capping position and the three S atoms and three O atoms forming two triangular faces of the trigonal antiprism. The magnetic data indicate a paramagnetic nature of the salt, with an S = 1 spin state.  相似文献   

20.
《中国化学快报》2021,32(9):2736-2750
Since the sulfur(VI) fluoride exchange reaction (SuFEx) was introduced by Sharpless and co-workers in 2014, this new-generation click chemistry has emerged as an efficient and reliable tool for creating modular intermolecular connections. Sulfonyl fluorides, one of the most important sulfur(VI) fluoride species, have attracted enormous attention in diverse fields, ranging from organic synthesis and material science, to chemical biology and drug discovery. This review aims to introduce seminal and recent progresses on the synthetic methods of sulfonyl fluorides, which include aromatic, aliphatic, alkenyl, and alkynyl sulfonyl fluorides. While not meant to be exhaustive, the purpose is to give a timely overview and insight in this field, and stimulate the development of more efficient synthetic methods of sulfonyl fluorides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号