首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate constant of the primary decomposition step was determined for four symmetrical and four unsymmetrical azoalkanes. From the experimental activation energies and some literature enthalpy data, the following enthalpies of formation of radicals and group contributions were calculated: ΔH? (CH3N2) = 51.5 ± 1.8 kcal mol?1, ΔH? (C2H5N2) = 44.8 ± 2.5 kcal mol?1, ΔH? (2?C3H7N2) = 37.9 ± 2.2 kcal mol?1, [NA-(C)] = 27.6 ± 3.7 kcal mol?1, [NA-(?A) (C)] = 61.2 ± 3.1 kcal mol?1.  相似文献   

2.
Syntheses of the copper and gold complexes [Cu{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] containing the homoleptic carbonyl cations [M{Fe(CO)5}2]+ (M=Cu, Au) are reported. Structural data of the rare, trimetallic Cu2Fe, Ag2Fe and Au2Fe complexes [Cu{Fe(CO)5}2][SbF6], [Ag{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] are also given. The silver and gold cations [M{Fe(CO)5}2]+ (M=Ag, Au) possess a nearly linear Fe-M-Fe’ moiety but the Fe-Cu-Fe’ in [Cu{Fe(CO)5}2][SbF6] exhibits a significant bending angle of 147° due to the strong interaction with the [SbF6] anion. The Fe(CO)5 ligands adopt a distorted square-pyramidal geometry in the cations [M{Fe(CO)5}2]+, with the basal CO groups inclined towards M. The geometry optimization with DFT methods of the cations [M{Fe(CO)5}2]+ (M=Cu, Ag, Au) gives equilibrium structures with linear Fe-M-Fe’ fragments and D2 symmetry for the copper and silver cations and D4d symmetry for the gold cation. There is nearly free rotation of the Fe(CO)5 ligands around the Fe-M-Fe’ axis. The calculated bond dissociation energies for the loss of both Fe(CO)5 ligands from the cations [M{Fe(CO)5}2]+ show the order M=Au (De=137.2 kcal mol−1)>Cu (De=109.0 kcal mol−1)>Ag (De=92.4 kcal mol−1). The QTAIM analysis shows bond paths and bond critical points for the M−Fe linkage but not between M and the CO ligands. The EDA-NOCV calculations suggest that the [Fe(CO)5]→M+←[Fe(CO)5] donation is significantly stronger than the [Fe(CO)5]←M+→[Fe(CO)5] backdonation. Inspection of the pairwise orbital interactions identifies four contributions for the charge donation of the Fe(CO)5 ligands into the vacant (n)s and (n)p AOs of M+ and five components for the backdonation from the occupied (n-1)d AOs of M+ into vacant ligand orbitals.  相似文献   

3.
A comprehensive mechanistic study by means of complementary experimental and computational approaches of the exo-cyclohydroamination of primary aminoalkenes mediated by the recently reported β-diketiminatoiron(II) complex B is presented. Kinetic analysis of the cyclisation of 2,2-diphenylpent-4-en-1-amine ( 1 a ) catalysed by B revealed a first-order dependence of the rate on both aminoalkene and catalyst concentrations and a primary kinetic isotope effect (KIE) (kH/kD) of 2.7 (90 °C). Eyring analysis afforded ΔH=22.2 kcal mol−1, ΔS=−13.4 cal mol−1 K−1. Plausible mechanistic pathways for competitive avenues of direct intramolecular hydroamination and oxidative amination have been scrutinised computationally. A kinetically challenging proton-assisted concerted N−C/C−H bond-forming non-insertive pathway is seen not to be accessible in the presence of a distinctly faster σ-insertive pathway. This operative pathway involves 1) rapid and reversible syn-migratory 1,2-insertion of the alkene into the Fe−Namido σ bond at the monomer {N^N}FeII amido compound; 2) turnover-limiting Fe−C σ bond aminolysis at the thus generated transient {N^N}FeII alkyl intermediate and 3) regeneration of the catalytically competent {N^N}FeII amido complex, which favours its dimer, likely representing the catalyst resting state, through rapid cycloamine displacement by substrate. The collectively derived mechanistic picture is consonant with all empirical data obtained from stoichiometric, catalytic and kinetics experiments.  相似文献   

4.
The essential participation of agostic interactions in C−H bond activation, cyclometallation and other catalytic processes has been widely observed. To quantitatively evaluate the Mo−H−C agostic interaction in the Mo β/γ- agostomers [CpMo(CO)2(PiPr3)]+ ( Mo , 1 and Mo , 2 ) and the Mn−H−C agostic interaction in the Mn α/ϵ-agostomers [(C6H9]Mo(CO)3] ( Mn , 1 and Mn , 2 ), the comprehensive density functional theory (DFT) theoretical investigations were performed. Results indicated that the Mo β-agostomer 1 is only favorable by 0.5 kcal mol−1 than Mo γ-agostomer 2 , and the Gibbs barrier for their interconversion was 9.1 kcal mol−1. A slightly higher Gibbs barrier of 12.7 kcal mol−1 for the isomerization between the Mn α/ϵ-agostomers was also obtained. The relatively strong agostic interactions in Mo β-agostomer 1 and Mn α-agostomer 1 were further verified by the AIM (Atoms-In-Molecules) analyses and the NAdOs (natural adaptive orbitals) analyses. The findings on the agostic interaction presented in this study are believed to benefit the understandings of the agostic interaction involved catalytic processes and to promote the development of new organometallic complexes.  相似文献   

5.
《Thermochimica Acta》1987,122(2):289-294
The standard enthalpy of formation of potassium metasilicate (K2SiO3), determined by hydrofluoric acid solution calorimetry, was found to be ΔHof,298 = −363.866±0.421 kcal mol−1 (−1522.415±1.762 kj mol−1). The standard enthalpy of formation from the oxides was found to beΔHo298 = −64.786±0.559 kcal mol−1 (−271.065±2.339 kJ mol−1).These experimentally determined data were combined with data from the literature to calculate the Gibbs energies of formation and equilibrium constants of formation over the temperature range of the literature data. The standard enthalpies of formation and Gibbs energies of formation are given as functions of temperature. The standard Gibbs energy of formation is ΔGf,298.150 = −341.705 kcal mol−1 (−1429.694 kJ mol−1).  相似文献   

6.
Stable N‐heterocyclic carbene analogues of Thiele and Chichibabin hydrocarbons, [(IPr)(C6H4)(IPr)] and [(IPr)(C6H4)2(IPr)] ( 4 and 5 , respectively; IPr=C{N(2,6‐iPr2C6H3)}2CHCH), are reported. In a nickel‐catalyzed double carbenylation of 1,4‐Br2C6H4 and 4,4′‐Br2(C6H4)2 with IPr ( 1 ), [(IPr)(C6H4)(IPr)](Br)2 ( 2 ) and [(IPr)(C6H4)2(IPr)](Br)2 ( 3 ) were generated, which respectively afforded 4 and 5 as crystalline solids upon reduction with KC8. Experimental and computational studies support the semiquinoidal nature of 5 with a small singlet?triplet energy gap ΔES?T of 10.7 kcal mol?1, whereas 4 features more quinoidal character with a rather large ΔES?T of 25.6 kcal mol?1. In view of the low ΔES?T, 4 and 5 may be described as biradicaloids. Moreover, 5 has considerable (41 %) diradical character.  相似文献   

7.
The gas-phase clustering reactions of proton in propanol and acetone, and chloride ions in acetone were investigated. The −ΔHn−1,n values obtained for clustering reactions (n−1,n) were as follows: H+ (C3H7OH)n−1 + C3H7OH ⇄ H+ (C3H7OH)n, (2, 3) 18.9 kcal mol−1, (3, 4) 14.2 kcal mol−1, (4, 5) 11.7 kcal mol−1; H+ (CH3COCH3)2 + CH3COCH3 ⇄ H+ (CH3COCH3)3, 14.2 kcal mol−1; and Cl + CH3COCH3 ⇄ Cl (CH3COCH3), 12.4 kcal mol.−1. For clustering reactions, Cl (CH3COCH3n−1 + CH3COCH3 ⇄ Cl (CH3COCH3)n where n ≥ 2, the equilibria could not be established; probably due to the isomerization of ligand acetone molecules from the keto to enol form.  相似文献   

8.
A set of calcium and barium complexes containing the fluoroarylamide N(C6F5)2 is presented. These compounds illustrate the key role of stabilising M⋅⋅⋅F−C secondary interactions in the construction of low-coordinate alkaline earth complexes. The nature of Ca⋅⋅⋅F−C bonding in calcium complexes is examined in the light of structural data, bond valence sum (BVS) analysis and DFT computations. The molecular structures of [Ca{N(C6F5)2}2(Et2O)2] ( 4 ′), [Ca{μ-N(SiMe3)2}{N(C6F5)2}]2 ( 52 ), [Ba{μ-N(C6F5)2}{N(C6F5)2}⋅toluene]2 ( 62 ), [{BDIDiPP}CaN(C6F5)2]2 ( 72 ), [{N^NDiPP}CaN(C6F5)2]2 ( 82 ), and [Ca{μ-OB(CH(SiMe3)2)2}{N(C6F5)2}]2 ( 92 ), where {BDIDiPP} and {N^NDiPP} are the bidentate ligands CH[C(CH3)NDipp]2 and DippNC6H4CNDipp (Dipp=2,6-iPr2-C6H3), are detailed. Complex 62 displays strong Ba⋅⋅⋅F−C contacts at around 2.85 Å. The calcium complexes feature also very short intramolecular Ca−F interatomic distances at around 2.50 Å. In addition, the three-coordinate complexes 72 and 82 form dinuclear structures due to intermolecular Ca⋅⋅⋅F−C contacts. BVS analysis shows that Ca⋅⋅⋅F−C interactions contribute to 15–20 % of the bonding pattern around calcium. Computations demonstrate that Ca⋅⋅⋅F−C bonding is mostly electrostatic, but also contains a non-negligible covalent contribution. They also suggest that Ca⋅⋅⋅F−C are the strongest amongst the range of weak Ca⋅⋅⋅X (X=F, H, Cπ) secondary interactions, due to the high positive charge of Ca2+ which favours electrostatic interactions.  相似文献   

9.
It has been confirmed by 1H and 13C NMR spectroscopies that Sn(σ-C7H7)Ph3 undergoes either 1,4- or 1,5-shifts of the SnPh3 moiety around the cycloheptatrienyl ring with ΔH3 = 13.8 ± 0.4 kcal mol?1, ΔS3 = ?5.6 ± 1.2 cal mol?1 deg?1, and ΔG3300 = 15.44 ± 0.14 kcal mol?1. Similarly, (σ-5-cyclohepta-1,3-dienyl)triphenyltin undergoes 1,5-shifts with ΔH3 = 12.4 ± 0.6 kcal mol?1, ΔS3 = ?11.2 ± 1.8 cal mol?1 deg?1, and ΔG3300 = 15.76 ± 0.13 kcal mol?1. It is therefore probable that Sn(σ-5-C5H5)R3 and Sn(σ-3-indenyl)R3 do not undergo 1,2-shifts as previously suggested but really undergo 1,5-shifts.  相似文献   

10.
To figure out the possible role of 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) as well as to provide reference thermochemical data in solution, the formation of Lewis acid-base complexes between HFIP (Lewis acid) and a series of 8 different Lewis bases (3 sulfoxides, 3 Nsp2 pyridine derivatives, 1 aromatic amine, 1 cyclic aliphatic ether) was examined by isothermal titration calorimetry (ITC) experiments and static density functional theory augmented with Dispersion (DFT−D) calculations. Measured ITC association enthalpy values (ΔHa) lie between −9.3 and −14 kcal mol−1. Computations including a PCM implicit solvation model produced similar exothermicity of association of all studied systems compared to the ITC data with ΔHa values ranging from −8.5 to −12.7 kcal mol−1. An additional set of calculations combining implicit and explicit solvation by chlorobenzene of the reactants, pointed out the relatively low interference of the solvent with the HFIP-base complexation: its main effect is to slightly enhance the Gibbs energy of the HFIP-Lewis base association. It is speculated that the interactions of bulk HFIP with Lewis bases therefore may significantly intervene in catalytic processes not only via the dynamic microstructuring of the medium but also more explicitly by affecting bonds’ polarization at the Lewis bases.  相似文献   

11.
The seven-membered cyclic potassium alumanyl species, [{SiNMes}AlK]2 [{SiNMes}={CH2SiMe2N(Mes)}2; Mes=2,4,6-Me3C6H2], which adopts a dimeric structure supported by flanking K-aryl interactions, has been isolated either by direct reduction of the iodide precursor, [{SiNMes}AlI], or in a stepwise manner via the intermediate dialumane, [{SiNMes}Al]2. Although the intermediate dialumane has not been observed by reduction of a Dipp-substituted analogue (Dipp=2,6-i-Pr2C6H3), partial oxidation of the potassium alumanyl species, [{SiNDipp}AlK]2, where {SiNDipp}={CH2SiMe2N(Dipp)}2, provided the extremely encumbered dialumane [{SiNDipp}Al]2. [{SiNDipp}AlK]2 reacts with toluene by reductive activation of a methyl C(sp3)-H bond to provide the benzyl hydridoaluminate, [{SiNDipp}AlH(CH2Ph)]K, and as a nucleophile with BPh3 and RN=C=NR (R=i-Pr, Cy) to yield the respective Al-B- and Al-C-bonded potassium aluminaborate and alumina-amidinate products. The dimeric structure of [{SiNDipp}AlK]2 can be disrupted by partial or complete sequestration of potassium. Equimolar reactions with 18-crown-6 result in the corresponding monomeric potassium alumanyl, [{SiNDipp}Al−K(18-cr-6)], which provides a rare example of a direct Al−K contact. In contrast, complete encapsulation of the potassium cation of [{SiNDipp}AlK]2, either by an excess of 18-cr-6 or 2,2,2-cryptand, allows the respective isolation of bright orange charge-separated species comprising the ‘free’ [{SiNDipp}Al] alumanyl anion. Density functional theory (DFT) calculations performed on this moiety indicate HOMO-LUMO energy gaps in the of order 200–250 kJ mol−1.  相似文献   

12.
The in vitro antifungal activity of the dithiocarbamate organotin complexes [Sn{S2CN(CH2)4}2Cl2] ( 1 ), [Sn{S2CN(CH2)4}2Ph2] ( 2 ), [Sn{S2CN(CH2)4}Ph3] ( 3 ), [Sn{S2CN(CH2)4}2n‐Bu2] ( 4 ), [Sn{S2CN(CH2)4}Cy3] {Cy = cyclohexyl} ( 5 ), [Sn{S2CN(C2H5)2}2Cl2] ( 6 ), [Sn{S2CN(C2H5)2}2Ph2] ( 7 ), [Sn{S2CN(C2H5)2}Ph3] ( 8 ), [Sn{S2CN(C2H5)2}3Ph] ( 9 ) and [Sn{S2CN(C2H5)2}Cy3] ( 10 ) has been screened against Candida albicans (ATCC 18804), Candida tropicalis (ATCC 750) and resistant Candida albicans collected from HIV‐positive Brazilian patients with oral candidiasis. All compounds exhibited antifungal activities and complexes 3 and 8 displayed the best results. We have investigated the effect of compounds 1–10 on the cellular activity of the yeast cultures. Changes in mitochondrial function have not been detected. However, all drugs reduced ergosterol biosynthesis. Preliminary studies on DNA integrity indicated that the compounds do not cause gross damage to yeast DNA. The data suggest that these compounds share some mechanisms of action on cell membranes similar to that of polyene but not with azole drugs, normally used in Candida infections. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine−quinone systems and explore their potential for the activation of C−H bonds. PMes3 (Mes=2,4,6-Me3C6H2) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P−O bonded zwitterionic adduct Mes3P−DDQ ( 1 ), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3C6H2) afforded C−H bond activation product Tip2P(H)(2-[CMe2(DDQ)]-4,6-iPr2-C6H2) ( 2 ). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3]⋅+[DDQ]⋅, and subsequent homolytic C−H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2P(H)(2-[CMe2{TCQ−B(C6F5)3}]-4,6-iPr2-C6H2) ( 4 , TCQ=tetrachloro-1,4-benzoquinone) and Tip2P(H)(2-[CMe2{oQtBu−B(C6F5)3}]-4,6-iPr2-C6H2) ( 8 , oQtBu=3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ−B(C6F5)3 and oQtBu−B(C6F5)3, respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C−H bond activation by the synergistic action of radical ion pairs.  相似文献   

14.
Herein, the first stable anions K[SIPrBp] ( 4 a-K ) and K[IPrBp] ( 4 b-K ) (SIPrBp=BpC{N(Dipp)CH2}2, IPrBp=BpC{N(Dipp)CH}2; Bp=4-PhC6H4; Dipp=2,6-iPr2C6H3) derived from classical N-heterocyclic carbenes (NHCs) (i.e. SIPr and IPr) have been isolated as violet crystalline solids. 4 a-K and 4 b-K are prepared by KC8 reduction of the neutral radicals [SIPrBp] ( 3 a ) and [IPrBp] ( 3 b ), respectively. The radicals 3 a and 3 b as well as [Me-IPrBp] 3 c (Me-IPrBp=BpC{N(Dipp)CMe}2) are accessible as crystalline solids on treatment of the respective 1,3-imidazoli(ni)um bromides (SIPrBp)Br ( 2 a ), (IPrBp)Br ( 2 b ), and (Me−IPrBp)Br ( 2 c ) with KC8. The cyclic voltammograms of 2 a–2 c exhibit two one-electron reversible redox processes in −0.5 to −2.5 V region that correspond to the radicals 3 a–3 c and the anions ( 4 a–4 c ). Computational calculations suggest a closed-shell singlet ground state for ( 4 a–4 c ) with the singlet-triplet energy gap of 17–24 kcal mol−1.  相似文献   

15.
Complexes of Titanium — Synthesis, Structure, and Fluxional Behaviour of CpTi{η6‐C5H4=C(p‐Tol)2}Cl (Cp′ = Cp*, Cp) The reaction of Cp′TiCl3 (C′ = Cp* or Cp) with magnesium and 6, 6‐di‐para‐tolylpentafulvene generates good yields of pentafulvene complexes Cp*Ti{η6‐C5H4=C(p‐Tol)2}Cl ( 4 ) and CpTi{η6‐C5H4=C(p‐Tol)2}Cl ( 5 ), respectively. The crystal and molecular structure of 4 have been determined from X‐ray data and exhibits compared to known η6‐pentafulvene complexes an unusual large Ti—C(p‐Tol)2 (Fv)‐distance (2.535(5)Å) evoked by the bulky substituents at the exocyclic carbon. Dynamic 1H‐NMR and spin saturation transfer experiments point out a rotation of the fulvene ligand around the Ti—Ct2 axis (Ct2 = centroid of the fulvene ring carbon atoms) with an activation barrier ΔGC = 60.6 ± 0.5 kJ mol−1 (TC = 314 ± 2 K). For 5 this barrier is significantly larger. Analogous dynamic behaviour is well known for diene complexes, but to our knowledge, it is here first‐time described for a pentafulvene complex.  相似文献   

16.
A family of unsymmetrical 1,2‐bis(imino)acenaphthene‐palladium methyl chloride complexes [1‐[2,6‐{(C6H5)2CH}2‐ 4‐{C(CH3)3}‐C6H2N]‐2‐(ArN)C2C10H6]PdMeCl (Ar = 2,6‐Me2Ph Pd1 , 2,6‐Et2Ph Pd2 , 2,6‐iPr2Ph Pd3 , 2,4,6‐Me3Ph Pd4 , 2,6‐Et2‐4‐MePh Pd5 ) have been prepared and fully characterized by 1H/13C NMR, FTIR spectroscopies, and elemental analysis. X‐ray diffraction analysis of Pd2 complex revealed a square planar geometry. Upon activation with methylaluminoxane, all the palladium complexes displayed high activities for norbornene (NBE) homo‐polymerization producing insoluble polymer. For the copolymerization of NBE with ethylene, Pd4 complex exhibited good activities with high incorporation of ethylene (up to 59.2–77.4%) and the resultant copolymer showed high molecular weights as maximum as 150.5 kg mol−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 922–930  相似文献   

17.
The interpretation of 36 charge neutral ‘contact pairs’ from the IsoStar database was supported by DFT calculations of model molecules 1 – 12 , and bimolecular adducts thereof. The ‘central groups’ are σ-hole donors (H2O and aromatic C−I), π-hole donors (R−C(O)Me, R−NO2 and R−C6F5) and for comparison R−C6H5 (R=any group or atom). The ‘contact groups’ are hydrogen bond donors X−H (X=N, O, S, or R2C, or R3C) and lone-pair containing fragments (R3C−F, R−C≡N and R2C=O). Nearly all the IsoStar distributions follow expectations based on the electrostatic potential of the ‘central-’ and ‘contact group’. Interaction energies (ΔEBSSE) are dominated by electrostatics (particularly between two polarized molecules) or dispersion (especially in case of large contact area). Orbital interactions never dominate, but could be significant (∼30 %) and of the n/π→σ*/π* kind. The largest degree of directionality in the IsoStar plots was typically observed for adducts more stable than ΔEBSSE≈−4 kcal⋅mol−1, which can be seen as a benchmark-value for the utility of an interaction in crystal engineering. This benchmark could be met with all the σ- and π-hole donors studied.  相似文献   

18.
We report that 2,6‐lutidine?trichloroborane (Lut?BCl3) reacts with H2 in toluene, bromobenzene, dichloromethane, and Lut solvents producing the neutral hydride, Lut?BHCl2. The mechanism was modeled with density functional theory, and energies of stationary states were calculated at the G3(MP2)B3 level of theory. Lut?BCl3 was calculated to react with H2 and form the ion pair, [LutH+][HBCl3?], with a barrier of ΔH=24.7 kcal mol?1G=29.8 kcal mol?1). Metathesis with a second molecule of Lut?BCl3 produced Lut?BHCl2 and [LutH+][BCl4?]. The overall reaction is exothermic by 6.0 kcal mol?1rG°=?1.1). Alternate pathways were explored involving the borenium cation (LutBCl2+) and the four‐membered boracycle [(CH2{NC5H3Me})BCl2]. Barriers for addition of H2 across the Lut/LutBCl2+ pair and the boracycle B?C bond are substantially higher (ΔG=42.1 and 49.4 kcal mol?1, respectively), such that these pathways are excluded. The barrier for addition of H2 to the boracycle B?N bond is comparable (ΔH=28.5 and ΔG=32 kcal mol?1). Conversion of the intermediate 2‐(BHCl2CH2)‐6‐Me(C5H3NH) to Lut?BHCl2 may occur by intermolecular steps involving proton/hydride transfers to Lut/BCl3. Intramolecular protodeboronation, which could form Lut?BHCl2 directly, is prohibited by a high barrier (ΔH=52, ΔG=51 kcal mol?1).  相似文献   

19.
Truly cationic metallocenes with the parent cyclopentadienyl ligand are so far unknown for the Group 14 elements. Herein we report on an almost “naked” [SnCp]+ cation with the weakly coordinating [Al{OC(CF3)3}4] and [{(F3C)3CO}3Al−F−Al{OC(CF3)3}3] anions. [SnCp][Al{OC(CF3)3}4] was used to prepare the first main‐group quadruple‐decker cation [Sn3Cp4]2+ again as the [Al{OC(CF3)3}4] salt. Additionally, the toluene adduct [CpSn(C7H8)][Al{OC(CF3)3}4] was obtained.  相似文献   

20.
Ligand substitution kinetics for the reaction [PtIVMe3(X)(NN)]+NaY=[PtIVMe3(Y)(NN)]+NaX, where NN=bipy or phen, X=MeO, CH3COO, or HCOO, and Y=SCN or N3, has been studied in methanol at various temperatures. The kinetic parameters for the reaction are as follows. The reaction of [PtMe3(OMe)(phen)] with NaSCN: k1=36.1±10.0 s−1; ΔH1=65.9±14.2 kJ mol−1; ΔS1=6±47 J mol−1 K−1; k−2=0.0355±0.0034 s−1; ΔH−2=63.8±1.1 kJ mol−1; ΔS−2=−58.8±3.6 J mol−1 K−1; and k−1/k2=148±19. The reaction of [PtMe3(OAc)(bipy)] with NaN3: k1=26.2±0.1 s−1; ΔH1=60.5±6.6 kJ mol−1; ΔS1=−14±22 J mol−1K−1; k−2=0.134±0.081 s−1; ΔH−2=74.1±24.3 kJ mol−1; ΔS−2=−10±82 J mol−1K−1; and k−1/k2=0.479±0.012. The reaction of [PtMe3(OAc)(bipy)] with NaSCN: k1=26.4±0.3 s−1; ΔH1=59.6±6.7 kJ mol−1; ΔS1=−17±23 J mol−1K−1; k−2=0.174±0.200 s−1; ΔH−2=62.7±10.3 kJ mol−1; ΔS−2=−48±35 J mol−1K−1; and k−1/k2=1.01±0.08. The reaction of [PtMe3(OOCH)(bipy)] with NaN3: k1=36.8±0.3 s−1; ΔH1=66.4±4.7 kJ mol−1; ΔS1=7±16 J mol−1K−1; k−2=0.164±0.076 s−1; ΔH−2=47.0±18.1 kJ mol−1; ΔS−2=−101±61 J mol−1 K−1; and k−1/k2=5.90±0.18. The reaction of [PtMe3(OOCH)(bipy)] with NaSCN: k1 =33.5±0.2 s−1; ΔH1=58.0±0.4 kJ mol−1; ΔS1=−20.5±1.6 J mol−1 K−1; k−2=0.222±0.083 s−1; ΔH−2=54.9±6.3 kJ mol−1; ΔS−2=−73.0±21.3 J mol−1 K−1; and k−1/k2=12.0±0.3. Conditional pseudo-first-order rate constant k0 increased linearly with the concentration of NaY, while it decreased drastically with the concentration of NaX. Some plausible mechanisms were examined, and the following mechanism was proposed. [Note to reader: Please see article pdf to view this scheme.] © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 523–532, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号