首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intensifying energy crises and severe environmental issues have led to the discovery of renewable energy sources, sustainable energy conversion, and storage technologies. Photocatalysis is a green technology that converts eco-friendly solar energy into high-energy chemicals. Covalent organic frameworks (COFs) are porous materials constructed by covalent bonds that show promising potential for converting solar energy into chemicals owing to their pre-designable structures, high crystallinity, and porosity. Herein, we highlight recent progress in the synthesis of COF-based photocatalysts and their applications in water splitting, CO2 reduction, and H2O2 production. The challenges and future opportunities for the rational design of COFs for advanced photocatalysts are discussed. This Review is expected to promote further development of COFs toward photocatalysis.  相似文献   

2.
蓝奔月  史海峰 《物理化学学报》2015,30(12):2177-2196
传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题. 利用太阳光和光催化材料将CO2还原为碳氢燃料, 不仅可以减少空气中CO2浓度, 降低温室效应的影响, 还可以提供碳氢燃料, 缓解能源短缺问题, 因此日益受到各国科学家的高度关注. 本文综述了光催化还原CO2为碳氢燃料的研究进展, 介绍了光催化还原CO2的反应机理, 并对现阶段报道的光催化还原CO2材料体系进行了整理和分类, 包括TiO2光催化材料, ABO3型钙钛矿光催化材料, 尖晶石型光催化材料, 掺杂型光催化材料, 复合光催化材料, V、W、Ge、Ga基光催化材料及石墨烯基光催化材料. 评述了各种材料体系的特点及光催化性能的一些影响因素. 最后对光催化还原CO2的研究前景进行了展望.  相似文献   

3.
The rapid development of industrialization and population has brought water, air-pollution and energy crises. Solar-driven catalysis is expected to relieve these issues. However, limited by poor light harvesting, serious charge recombination of semiconductors, and high surface reaction barriers, the low efficiency of solar conversion is far from satisfactory for industrial needs. Ferroelectrics are considered to be promising photocatalysts to overcome these shortcomings. Herein, perovskite ferroelectrics such as BaTiO3, PbTiO3, BiFeO3 and LiNbO3, layered bismuth-based ferroelectrics like Bi2WO6 and Bi2MoO6, and other ferroelectrics are introduced, and their crystal structure, polarity source and synthetic method are highlighted. Subsequently, research progress in ferroelectrics for photocatalysis is summarized, including pollution degradation, water splitting and CO2 reduction. Finally, the current challenges and future prospects of ferroelectric photocatalysts are provided. The purpose of this review is not only to provide a timely summary for the application of ferroelectrics in photocatalysis, but also to present deep insight and a guideline for future research work into ferroelectrics.  相似文献   

4.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

5.
Artificial photoreduction of CO2 is vital for the sustainable development of human beings via solar energy storage in stable chemicals. This process involves intricate light-matter interactions, but the role of incident light intensity in photocatalysis remains obscure. Herein, the influence of excitation intensity on charge kinetics and photocatalytic activity is investigated. Model photocatalysts include the pure graphitic carbon nitride (g-C3N4) and g-C3N4 loaded with noble/non-noble-metal cocatalysts (Ag, TiN, and CuO). It is found that the increase of light intensity does not always improve the electron utilization. Overly high excitation intensities cause charge carrier congestion and changes the recombination mechanism, which is called the light congestion effect. The electron transport channels can be established to mitigate the light-induced effect via the addition of cocatalyst, leading to a nonlinear growth in the reaction rate with increasing light intensity. From experiments and simulations, it is found that the light intensity and active site density should be collectively optimized for increasing the energy conversion efficiency. This work elucidates the effect of light intensity on photocatalytic CO2 reduction and emphasizes the synergistic relationship of matching the light intensity and the photocatalyst category. The study provides guidance for the design of efficient photocatalysts and the operation of photocatalytic systems.  相似文献   

6.
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.  相似文献   

7.
Two-dimensional (2D) graphdiyne (GDY), a rapidly rising star on the horizon of carbon materials, is a new carbon allotrope featuring sp- and sp2-cohybridized carbon atoms and 2D one-atom-thick network. Since the first successful synthesis of GDY by Professor Li's group in 2010, GDY has attached great interests from both scientific and industrial viewpoints based on its unique structure and physicochemical properties, which provides a fertile ground for applications in various fields including electrocatalysis, energy conversion, energy storage and optoelectronic devices. In this work, various potential properties of the GDY-based electrocatalysts and their recent advances in energy conversion are reviewed, including atomic catalysts, heterogeneous catalysts, and metal-free catalysts. The critical role of GDY in improving catalytic activity and stability is analyzed. The perspectives of the challenges and opportunities faced by GDY-based materials for energy conversion are also outlined.  相似文献   

8.
Introducing band gap states to TiO2 photocatalysts is an efficient strategy for expanding the range of accessible energy available in the solar spectrum. However, few approaches are able to introduce band gap states and improve photocatalytic performance simultaneously. Introducing band gap states by creating surface disorder can incapacitate reactivity where unambiguous adsorption sites are a prerequisite. An alternative method for introduction of band gap states is demonstrated in which selected heteroatoms are implanted at preferred surface sites. Theoretical prediction and experimental verification reveal that the implanted heteroatoms not only introduce band gap states without creating surface disorder, but also function as active sites for the CrVI reduction reaction. This promising approach may be applicable to the surfaces of other solar harvesting materials where engineered band gap states could be used to tune photophysical and ‐catalytic properties.  相似文献   

9.
The matching of charge transport layer and photoactive layer is critical in solar energy conversion devices, especially for planar perovskite solar cells based on the SnO2 electron‐transfer layer (ETL) owing to its unmatched photogenerated electron and hole extraction rates. Graphdiyne (GDY) with multi‐roles has been incorporated to maximize the matching between SnO2 and perovskite regarding electron extraction rate optimization and interface engineering towards both perovskite crystallization process and subsequent photovoltaic service duration. The GDY doped SnO2 layer has fourfold improved electron mobility due to freshly formed C?O σ bond and more facilitated band alignment. The enhanced hydrophobicity inhibits heterogeneous perovskite nucleation, contributing to a high‐quality film with diminished grain boundaries and lower defect density. Also, the interfacial passivation of Pb?I anti‐site defects has been demonstrated via GDY introduction.  相似文献   

10.
Graphdiyne(GDY)has the unique feature in the topological ordered arranged sp-and sp2-hybridized carbon atoms,thus deriving a series of 2D allotropes.Due to inhomogeneous π-bonding and carbon orbital overlap between different hybrid carbon atoms,GDY possesses a natural band gap with a Dirac cones structure.And GDY exhibits semiconductor property with a conductivity of 2.516×10-4 S/m at room temperature.The topological distribution of alkyne and benzene bonds of GDY makes its surface charge distribution extremely uneven,which produces high intrinsic activity for further modification.Its unique molecular structure endows the specific interaction with various species,such as ions,atoms,molecules and nanoparticles,showing excellent charge transport capability and unique advantages in mass transfer and energy conversion.From the view of the interaction principle between GDY and different compositions,we summarized the application of GDY-based materials in the fields of catalysis,energy conversion and storage,biological detection and so on.  相似文献   

11.
Localized surface plasmon resonance(LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts.In the past decades,noble metal nanoparticles(Au and Ag) with LSPR feature have found wide applications in solar energy conversion.Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures.However,high cost and...  相似文献   

12.
Carbon dioxide(CO2) is an important and valuable C1 resource for the synthesis of numerous of value-added products. However, efficient fixation and conversion of CO2 into organic carbonates under mild conditions remain great challenges. Herein, graphdiyne(GDY)-based nickel atomic catalysts(Ni0/GDYs) were synthesized through a facile in-situ reduction method. Experimental results showed that the obtained Ni0/GDY had outstanding catalytic performances for converting CO2 into cyclic carbonates with a high reaction conversion(99%) and reaction selectivity(ca. 100%) at 80℃ and under 1 atm(1 atm=101325 Pa). Specially, the activation energy (Ea) value for the Ni0/GDY is 37.05 kJ/mol, lower than those of reported catalysts. The reaction mechanism was next carefully analyzed by using density functional theory(DFT) calculations. Such an excellent catalytic property could be mainly attributed to the high dispersion of active sites on the Ni0/GDY, and the unique incomplete charge transfer properties of GDY-based zero-valent metallic catalysts.  相似文献   

13.
As a new 2D carbon material allotrope composed of sp and sp2 carbon atoms, graphdiyne (GDY) possesses a highly conjugated porous structure, easily tunable intrinsic bandgap, and various excellent properties. Such properties allowed researchers to develop methods to prepare GDY, so that it can be applied for energy storage and conversion, environmental protection, various electronic devices and so on. In this review, the authors systematically discuss the methods and strategies developed for preparing GDY and its derivatives, including the synthesis of GDY by using liquid-, solid-, and gas-phase methods, the synthesis of heteroatom-doped GDY, the preparation of GDY-based composites, and the synthesis of GDY analogues. All these preparation methods can provide the way to obtain GDY for specific studies and applications.  相似文献   

14.
《中国化学》2018,36(5):455-460
Photochemical reduction of CO2 with H2O into energy‐rich chemicals using inexhaustible solar energy is an appealing strategy to simultaneously address the global energy and environmental issues. Earth‐abundant metal complexes show promising application in this field due to their easy availability, rich redox valence and tunable property. Great progress has been seen on catalytic reduction of CO2 under visible light illumination employing earth‐abundant metal complexes and their hybrids as key contributors, especially for producing CO and HCOOH via the two‐electron reduction process. In this minireview, we will summarize and update advances on earth‐abundant metal complex‐derived photocatalytic system for visible‐light driven CO2 photoreduction over the last 5 years. Homogeneous earth‐abundant metal complex photocatalysts and earth‐abundant metal complex derived hybrid photocatalysts were both presented with focus on efficient improvement strategy.  相似文献   

15.
从二维碳材料石墨炔(GDY)的分子和电子结构出发,重点论述石墨炔在能源存储和转换两个领域的应用,包括最新的理论和实验进展。石墨炔独特的三维孔隙结构,使得石墨炔在锂存储和氢气存储应用中具备天然的优势,既可以用作锂离子相关的储能器件,包括锂离子电池、锂离子电容器等;也可作为储氢材料,用于燃料电池等。通过掺杂的方法,还能进一步提高石墨炔储锂和储氢的性能。由于sp炔键和sp2苯环的存在,使石墨炔具有多重共轭的电子结构,在具备狄拉克锥的同时,其带隙也可通过多种途径调控,使得石墨炔不仅可以作为非金属高活性催化剂替代贵金属在光催化等方面应用,还可以在太阳能电池的空穴传输层和电子传输层方面获得应用,展现了石墨炔在能源方面独特的应用价值。我们将从理论预测和实验研究两方面介绍该领域目前的研究现状和发展趋势。  相似文献   

16.
As a special carbon material, graphdiyne (GDY) features the superiorities of incomplete charge transfer effect on the atomic level, tunable electronic structure and anchoring metal atoms directly with organometallic coordination bonds M (metal)-C (alkynyl carbon in GDY), providing it an ideal platform to construct single-atom catalysts (ACs). The coordination environment of single atoms anchored on GDY plays a key role in their catalytic performance. The mini-review highlights state-of-the-art progress in the rational design of GDY-based ACs and their applications, and mainly reveals the relationship between the coordination engineering of the GDY-based ACs and corresponding catalytic performance. Finally, some prospects concerning the future development of GDY-based ACs in energy conversion are also discussed.  相似文献   

17.
A facile and controllable in situ reduction strategy is used to create surface oxygen vacancies (OVs) on Aurivillius‐phase Sr2Bi2Nb2TiO12 nanosheets, which were prepared by a mineralizer‐assisted soft‐chemical method. Introduction of OVs on the surface of Sr2Bi2Nb2TiO12 extends photoresponse to cover the whole visible region and also tremendously promotes separation of photoinduced charge carriers. Adsorption and activation of CO2 molecules on the surface of the catalyst are greatly enhanced. In the gas‐solid reaction system without co‐catalysts or sacrificial agents, OVs‐abundant Sr2Bi2Nb2TiO12 nanosheets show outstanding CO2 photoreduction activity, producing CO with a rate of 17.11 μmol g?1 h?1, about 58 times higher than that of the bulk counterpart, surpassing most previously reported state‐of‐the‐art photocatalysts. Our study provides a three‐in‐one integrated solution to advance the performance of photocatalysts for solar‐energy conversion and generation of renewable energy.  相似文献   

18.
A facile and controllable in situ reduction strategy is used to create surface oxygen vacancies (OVs) on Aurivillius‐phase Sr2Bi2Nb2TiO12 nanosheets, which were prepared by a mineralizer‐assisted soft‐chemical method. Introduction of OVs on the surface of Sr2Bi2Nb2TiO12 extends photoresponse to cover the whole visible region and also tremendously promotes separation of photoinduced charge carriers. Adsorption and activation of CO2 molecules on the surface of the catalyst are greatly enhanced. In the gas‐solid reaction system without co‐catalysts or sacrificial agents, OVs‐abundant Sr2Bi2Nb2TiO12 nanosheets show outstanding CO2 photoreduction activity, producing CO with a rate of 17.11 μmol g?1 h?1, about 58 times higher than that of the bulk counterpart, surpassing most previously reported state‐of‐the‐art photocatalysts. Our study provides a three‐in‐one integrated solution to advance the performance of photocatalysts for solar‐energy conversion and generation of renewable energy.  相似文献   

19.
《Journal of Energy Chemistry》2017,26(6):1039-1049
CO_2 conversion via photocatalysis is a potential solution to address global warming and energy shortage.Photocatalysis can directly utilize the inexhaustible sunlight as an energy source to catalyze the reduction of CO_2 to useful solar fuels such as CO, CH_4, CH_3OH, and C_2H_5OH. Among studied formulations, Cubased photocatalysts are the most attractive for CO_2 conversion because the Cu-based photocatalysts are low-cost and abundance comparing noble metal-based catalysts. In this literature review, a comprehensive summary of recent progress on Cu-based photocatalysts for CO_2 conversion, which includes metallic copper, copper alloy nanoparticles(NPs), copper oxides, and copper sulfides photocatalysts, can be found. This review also included a detailed discussion on the correlations of morphology, structure, and performance for each type of Cu-based catalysts. The reaction mechanisms and possible pathways for productions of various solar fuels were analyzed, which provide insight into the nature of potential active sites for the catalysts. Finally, the current challenges and perspective future research directions were outlined, holding promise to advance Cu-based photocatalysts for CO_2 conversion with much-enhanced energy conversion efficiency and production rates.  相似文献   

20.
A multi-level architecture formed alternatively by the conformal graphdiyne (GDY) and CuS is well engineered for Li-free cathode. Such a proof-of-concept architecture efficiently integrates the advantages of GDY and produces new functional heterojunctions (sp−C−S−Cu hybridization bond). The layer-by-layer 2D confinement effect successfully avoids structural collapse, the selective transport inhibits the shuttling of active components, and the interfacial sp−C−S−Cu hybridization bond significantly regulates the phase conversion reaction. Such new sp−C−S−Cu hybridization of GDY greatly improves the reaction dynamics and reversibility, and the cathode delivers an energy density of 934 Wh kg−1 and an unattenuated lifespan of 3000 cycles at 1 C. Our results indicate that the GDY-based interface strategy will greatly promote the efficient utilization of the conversion-type cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号