首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zusammenfassung Die Absorptions- und Reflexionsspektren der Oktocyanokomplexe desMo(IV) undW(IV) sowie die Absorptionsspektren der Oktocyanotomplexe desMo(V) undW(V) werden mitgeteilt. Die Spektren werden unter Zugrundelegung der durch Raman- und IR-spektroskopische Untersuchungen gefordertenD 4d-Symmetrie dieser Verbindungen interpretiert. Die beobachteten Banden niedriger Intensität (log<3) werden Übergängen in einem Termsystem zugeordnet, das für die Konfigurationend 2 undd 1 und die SymmetrieD 4d berechnet worden ist. Banden hoher Intensität (log>3) werden auf Übergänge in antibindende Zustände zurückgeführt, an denen höherep-Zustände des Zentralions sowie Ligandenzustände beteiligt sind. Die erhaltenen Werte des Feldparameters stimmen mit ligandenfeldtheoretischen Erwartungen überein.
Absorption and reflection spectra of the octacyanides ofMo(IV) andW(IV) and the absorption spectra of the octacyanides ofMo(V) andW(V) are presented. The spectra are interpreted in terms of theD 4d symmetry of the compounds supported by investigations of Raman and infrared spectra. Bands of low intensity (log<3) correspond to transitions between levels obtained in the case of the configurationsd 2 andd 1 respectively, in a field ofD 4d symmetry. Bands of high intensity (log>3) are attributed to transitions into antibonding levels in which p-orbitals of the central ion and ligand orbitals participate. The values of the field parameter obtained are in accord with ligand field theory.

Résumé Les spectres d'absorption et de réflexion des complexes octocyanurés duMo(IV) et duW(IV) ainsi que les spectres d'absorption des mêmes complexes deMo(V) et de W(V) sont présentés. Les spectres sont interprétés en supposant la symétrieD 4d des molécules indiquée par des analyses des spectres Raman et infrarouges. Les bandes de faible intensité (log<3) sont attribuées à des transitions dans un système de niveaux, calculé pour les configurationsd 2 etd 1, respectivement, en symétrieD 4d. Des bandes de forte intensité (log>3) sont attribuées à des transitions vers des niveaux antiliants auxquels participent des fonctions élevéesp de l'ion central et des fonctions des groupes liés. Les valeurs obtenues pour le paramètre de champ sont en accord avec les prévisions de la théorie.
  相似文献   

2.
The complex ion [Fe(CN)6SO3]4− has been prepared in aqueous solution and as the zinc salt in the solid state. The electronic and IR spectra of the complex ion (I) have been recorded. MO calculations have been performed to understand the electronic structure of complex I. The electronic spectra of I and hexacyanoferrate(II) [HCF(II)] have been calculated and compared with the experimental results for I, HCF(II) and HCF(III). The experimental and theoretical results suggest that the oxidation state of Fe in I is + 3 and not +2 and the SO3 moiety is bonded to one of the nitrogen atoms of the cyano group.  相似文献   

3.

The oxidation reaction of phenyl hydrazine (Phh) by hexacyanoferrate ([Fe(CN)6]3?) has been studied in water‐in‐oil (w/o) microemulsion media. The kinetic profile of the reaction was investigated as a function of [Phh], droplet size, and droplet concentration. Comparison of the kinetic profiles of the reaction in microemulsion, water‐urea, and water‐AOT‐urea media indicates that the kinetic profile of the reaction in microemulsion shows a behavior similar to that of the reaction in water‐AOT‐urea medium at 4 M urea. An initial increase and then a decrease in kobs is observed with increasing molar ratio, Wo(=[H2O]/[AOT]) at constant [AOT] (=0.4 M), whereas kobs decreases upon increasing the AOT concentration at constant molar ratio.  相似文献   

4.
The complexes [Ph3PMe] 2 + [BiI5]2? (I) and [Ph3PMe] 2 + [BiI5 · C 5H5N]2? · C 5H5N (II) were synthesized by the reaction of bismuth triiodide with triphenylmethylphosphonium iodide, and their structures were determined by X-ray diffraction analysis. The P atom in cation I has slightly distorted tetragonal coordination polyhedron (the CPC angles 109.42(4)° and 109.52(4)°, the bond lengths P-CPh 1.779(2), P-CMe 1.793(1) Å. The Bi atom in the anion of complex I has an ideal trigonal-bipyramidal coordination polyhedron (Bi-Ieq 3.0031(4), Bi-Ieq 3.0485(5) Å). The crystal of complex II consists of the anions [BiI5 · C 5H5N]2?, solvated pyridine molecules, and two types of crystallographically independent tetrahedral triphenylmethylphosphonium cations (the angles CPC 106.9(1)°–111.7(1)°, the distances P-CPh 1.785(3)–1.792(3), P-CMe 1.793(3), 1.786(3) Å). The Bi atoms in the anion of complex II have a distorted octahedral coordination polyhedron (Bi-I 3.0878(4)–3.1240(3), Bi-N(1) 2.628(3) Å).  相似文献   

5.
In this work, the largest heterometallic supertetrahedral clusters, [Zn6Ge16]4− and [Cd6Ge16]4−, were directly self-assembled through highly-charged [Ge4]4− units and transition metal cations, in which 3-center–2-electron σ bonding in Ge2Zn or Ge2Cd triangles plays a vital role in the stabilization of the whole structure. The cluster structures have an open framework with a large central cavity of diameter 4.6 Å for Zn and 5.0 Å for Cd, respectively. Time-dependent HRESI-MS spectra show that the larger clusters grow from smaller components with a single [Ge4]4− and ZnMes2 units. Calculations performed at the DFT level indicate a very large HOMO–LUMO energy gap in [M6Ge16]4− (2.22 eV), suggesting high kinetic stability that may offer opportunities in materials science. These observations offer a new strategy for the assembly of heterometallic clusters with high symmetry.  相似文献   

6.
7.
We report a new antiferromagnetic radical-anion salt (RAS) formed from 7,7,8,8-tetracyanquinonedimethane (TCNQ) anion and 2-amino-5-chloro-pyridine cation with the composition of (N−CH3−2-NH2−5Cl−Py)(TCNQ)(CH3CN). The crystallographic data indicates the formation of (TCNQ)2.− radical-anion π-dimers in the synthesized RAS. Unrestricted density functional theory calculations show that the formed π-dimers characterize with strong π-stacking “pancake” interactions, resulting in high electronic coupling, enabling efficient charge transfer properties, but π-dimers cannot be stable in the isolated conditions as a result of strong Coulomb repulsions. In a crystal, where (TCNQ)2.− π-dimers bound in the endless chainlets via supramolecular bonds with (N−CH3−2-NH2−5-Cl−Py)+ cations, the repulsion forces are screened, allowing for specific parallel π-stacking interactions and stable radical-anion dimers formation. Measurements of magnetic susceptibility and magnetization confirm antiferromagnetic properties of RAS, what is in line with the higher stability of ground singlet state of the radical-anion pair, calculated by means of the DFT. Therefore, the reported radical-anion (N−CH3−2-NH2−5Cl−Py)(TCNQ)(CH3CN) solvate has promising applications in novel magnetics with supramolecular structures.  相似文献   

8.
Complexes with antimony-containing anions, [Ph3MeP] + 2 [SbI5]2? (I), [Ph3MeP] + 2 [Sb3I12]3? (II), [Ph3MeP] + 3 [Sb3I12]3? · Me2C=O (III), and [Ph3MeP] + 3 [Sb2I9]3? (IV), were synthesized by reacting triphenylmethylphosphonium iodide with antimony iodide. The central atom in the cations of the complexes has a distorted tetrahedral coordination. In the trinuclear anions of complexes II and III, each of the terminal SbI3 groups is bound to the central Sb atom through two μ2- and one μ3 iodine bridges (SbSbSb angles are 103.0° and 102.2°, respectively). In the binuclear anion of complex IV, antimony atoms are linked with each other via three bridging iodine atoms.  相似文献   

9.
Three new cyano-bridged complexes 1 [Ni(tn)2Ni(CN)4] (tn?=?1,3-diaminopropane), 2 [CuII(dipn)NiII(CN)4], and 3 [Cu(dipn)]6[Co(CN)6]4?·?4H2O (dipn?=?dipropylenetriamine) have been assembled by the templates [Ni(CN)4]2? and [Co(CN)6]3?. 1 consists of a one-dimensional linear chain–Ni(tn)2–NC–Ni(CN)2–CN–Ni(tn)2? in which the Ni(II) centers are linked by two CN groups. One 1-D zigzag chain of 2 is formed with–Ni(2)–C–N–Cu(1)–N–C–linkages. A 2D structure of 3 is formed by an alternate array of [Co(CN)6]3? and [Co][Cu6] units. For 1, there is an overall weak antiferromagnetic interaction between Ni(II) ions through the–NC–Ni–CN–bridges of the diamagnetic [Ni(CN)4]2? anions. 2 exhibits a weak antiferromagnetic exchange interaction between copper(II) ions mediated by [Ni(CN)4]2? diamagnetic bridges. Complex 3 exhibits a weak ferromagnetic interaction between nearest CuII and CuII atoms through–NC–Co–CN–bridges.  相似文献   

10.
Abstract

The properties of PF5, HPF4, H2PF3, and H3PF25[sgrave]5P derivatives of (HO)3PO, (HO)2HPO, (HO)H2PO, and of the hypothetic H3PO) and the formation of the related Δ5[sgrave]6P anions PF6 , HPF5 , and trans-H2PF4 have been studied some years ago 1–4. The mono and spirocyclic dioxa and tetraoxa analogues, 1 and 2 available from the corresponding precursor phosphoranes by fluoride addition could be found also as products in the reaction of phosphite 35 and K+(CF3)2CFO together with two other phosphates, 4 and 5. A 19F–19F homocorrelated 2 D NMR spectrum of 2 indicated coupling of the P–F fluorine nuclei with two CF3 groups by a non bond mechanism.  相似文献   

11.
As a consequence of the static Jahn-Teller effect of the 5E ground state of MnIII in cubic structures with octahedral parent geometries, their octahedral coordination spheres become distorted. In the case of six fluorido ligands, [MnF6]3− anions with two longer and four shorter Mn−F bonds making elongated octahedra are usually observed. Herein, we report the synthesis of the compound K3[MnF6] through a high-temperature approach and its crystallization by a high-pressure/high-temperature route. The main structural motifs are two quasi-isolated, octahedron-like [MnF6]3− anions of quite different nature compared to that met in ideal octahedral MnIII Jahn-Teller systems. Owing to the internal electric field of Ci symmetry dominated by the next-neighbour K+ ions acting on the MnIII sites, both sites, the pseudo-rhombic (site 1) and the pseudo-tetragonally elongated (site 2) [MnF6]3− anions are present in K3[MnF6]. The compound was characterized by single-crystal and powder X-ray diffraction, and magnetometry as well as by FTIR, Raman, and ligand field spectroscopy. A theoretical interpretation of the electronic structure and molecular geometry of the two Mn sites in the lattice is given by using a vibronic coupling model with parameters adjusted from multireference ab-initio cluster calculations.  相似文献   

12.
K3 [Fe(CN)6] and KFe[Fe(CN)6] are classical coordination compounds. However, the mechanism of decomposition reactions has not been well expounded. The gas products of thermal decomposition were examined by gas chroma tography (GC) , and the structure of the solid products by Mossbauer spectroscopy(MS) and X-ray diffraction(XRD). The findings are explained in terms of the theory of coordination chemistry and a decomposition mechanism is proposed in this study. On the basis of various experimental results, the first stage of the decomposition of K3[Fe(CN)6] in He was found to be the evolution of(CN)2 resulting in the reduction of Fe(Ⅲ)12K3 [Fe(CN)6]→9K4[Fe(CN)6] + Fe2 [Fe(CN)6] + 6 ( CN )For KFe [Fe(CN) 6 ], the first stage of decomposition man be represented as6KFe[Fe(CN)6]→3K2Fe[Fe(CN)6] + 2Fe2[Fe(CN)6 + 3(CN)2At higher temperatures, the decomposition of both K3[Fe(CN)6) andKFe[Fe(CN)6] to form KCN and Fe2C was accomplished by the release of(CN)2 and N2.  相似文献   

13.
Self-assembly of the precursor [Cu(L)]2+ (L = 3,10-dipropyl-1,3,5,8,10,12-hexaazacyclotetradecane) with hexacyanometalate [Fe(CN)6]3− produces a 3-D cyano-bridged Cu(II)–Fe(III) bimetallic assembly, [CuL]2[Fe(CN)6]ClO4 · H2O (1), characterized by single-crystal X-ray diffraction studies, and magnetic measurements. The crystallographic determination reveals that each hexacyanoferromate(III) ion connects four copper(II) ions using four co-planar CN groups which axially coordinate to the copper ion in a trans fashion forming trans-CuL(N≡C)2 moieties in (1). Magnetic studies reveal that (1) displays a ferromagnetic interaction between Cu(II) and Fe(III) through the CN linkage.  相似文献   

14.

The supramolecular interplay of the Ph 3 Sn+ unit and the [Cu(CN) 4 ]3? ion with either 4,4′-bipyridine (bpy), trans-1,2-bis(4-pyridyl)ethene (tbpe), 1,2-bis(4-pyridyl)ethane (bpe), pyrazine (pyz), or methylpyrazine (mepyz) as bidentate ligands in presence of H 2 O has been investigated for the first time. The products obtained have the general formula [(Ph 3 Sn) 3 Cu(CN)4·L·XH2O], where L is a bidentate ligand and X = 0–2. H 2 O molecules are usually coordinated to tin atoms and are involved in two significant O─H─N hydrogen bonds, wherein the nitrogen atoms belong either to the bidentate ligand or the M-coordinated cyanide ligands. The structures of these supramolecular coordination polymers were investigated by elemental analysis, X-ray powder diffraction, and IR, mass, and NMR spectra.  相似文献   

15.
The crystal structures of a new solvate of the ditopic receptor 1,3-calix[4]-bis-crown-6, Bis-C6, and of 1,3-calix[4]-bis-(benzo-crown-6), Bis-benzoC6, are reported. Bis-C6.3 CH3CN (1) crystallizes in the monoclinic space group P21/n, a = 14.388(3), b = 26.947(8), c = 14.707(4) Å, = 113.19(3)°, V = 5241(5) Å3, Z = 4. Refinement led to a final conventional R value of 0.092 for 2723 reflections. The structure of (1) differs from the previously reported structure of Bis-C6.4 CH3CN by the conformation of one crown either chain. Two acetonitrile molecules are in the close neighbourhood of the crown ether cavities. Bis-benzoC6.3 CH3CN (2) crystallizes in the monoclinic space group P21/c, a = 10.391(4), b = 17.264(11), c = 30.426(9) Å, = 94.62(3)°, V = 5440(7) Å3, Z = 4. Refinement led to a final conventional R value of 0.106 for 2965 reflections. Two acetonitrile molecules are located near the crown ether cavities, as in (1). One of the crown ether conformations is the same as in the binuclear caesium complex of Bis-benzoC6, supporting the hypothesis of a preorganization of this ligand towards the complexation of this ion; the second crown ether chain is partially disordered.  相似文献   

16.
Abstract

Tricoordinated pentavalent phosphorus compounds- [sgrave]35-phosphoranes-present a new field in unusually (low) coordinated phosphorus chemistry. Our current interest in these compounds is stimulated by the possibility of actual determination of unknown phosphorus bond polarities, using electrical methods in subsequent investigations of the spatial and electronic structure of [sgrave]35 -phosphoranes. We have studied the series of bis(imino)phosphoranes by the method of dipole moments R2N=P (R1)=NR3 (I-VI) R1 R2 R3,μexp.(D): (I) N(SiMe 3)2, SiMe 3, SiMe3, 2.16; (11) t-Bu, t-Bu, 2.36; (111) N(SiMe3)2, SiMe3, t-Bu, 2.26; (IV) 2,4,6-Me3C6H2, t-Bu, 2,4,6-t-Bu3C6H2, 2.44; (V) t-Bu(Me3Si)N, t-Bu, t-Bu, 2.74; (VI) c-2,2,6,6-Me4C5H6N, SiMe3, SiMe3, 2.82 and defined P=N bond polarity (3.14D). Dipole monents (I-VI) are described by the given values, the group moments R-P and R-N were previously found from dicoordinated phosphorus compounds. The tendency of increasing μexp, with the growth of n,Π-donor abilities of μexP,1 substituent R in row (I-III)-(V)-(VI) is possibly caused by the increase of the conjugative effect contribution in stabilization of the 4-electron 3-centre Π-system N=P=N.  相似文献   

17.
18.
Three novel coordination polymers K5[MnMo6Se8(CN)6] · 8H2O (1), (Me4N)4[{Mn(H2O)2}1.5Mo6Se8(CN)6] · 4H2O (2), and K3[{Mn2(H2O)4}Mo6Se8(CN)6] · 7H2O (3) have been synthesized by layering of a methanol solution of [Mn(salen)]CH3COO (salen–N,N′-bis(salicylidene)ethylenediamine) on an aqueous solution of K7[Mo6Se8(CN)6] · 8H2O. The compounds have been characterized by single-crystal X-ray diffraction analysis. All structures are based on negatively charged porous polymer frameworks where CN groups of [Mo6Se8(CN)6]7− cluster complexes are coordinated to Mn2+ cations. Cavities in the frameworks are filled by additional cations and solvate water molecules.  相似文献   

19.
The IR, electronic and NMR spectra of K2[Co(CN)5py]·H2O and Na3[fe(CN)5py]·3H2O, as well as the Mössbauer spectrum of the latter complex, are reported and discussed. In particular it is argued that the wavenumbers and intensities of the i.r.-active CN stretching vibrations and the NMR chemical shifts of the m- and p-but not o-protons suggest greater metal to ligand back π-bonding in the Fe(II) complex than in the Co(III) complex.  相似文献   

20.
Coumarin-based urea and urea–amide scaffolds 13 have been designed and synthesized for the selective and naked eye detection of cyanide ion. Of the three, compound 3 exhibits ratiometric fluorescence change selectively in the presence of CN? and validates the rationality in designing anion receptor. Upon interaction with CN?, the color of the solution of 3 in CH3CN under UV exposure becomes bright yellow, which is beneficial for its naked eye detection. Addition of CN? of ~10?4 M brings nice color change from colourless to yellow in ordinary light. The sensing event is supposed to be due to nucleophilic addition of CN? to the coumarin unit enabling intramolecular charge transfer (ICT) mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号