首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Redox metalloenzymes achieve very selective oxidation reactions under mild conditions using O2 or H2O2 as oxidants and release harmless side-products like water. Their oxidation selectivity is intrinsically linked to the control of the oxidizing species generated during the catalytic cycle. To do so, a second coordination sphere is used in order to create a pull effect during the activation of O2 or H2O2, thus ensuring a heterolytic O–O bond cleavage. Herein, we report the synthesis and study of a new non-heme FeII complex bearing a pentaazadentate first coordination sphere and a pendant phenol group. Its reaction with H2O2 generates the classical FeIIIOOH species at high H2O2 loading. But at low H2O2 concentrations, an FeIVO species is generated instead. The formation of the latter is directly related to the presence of the 2nd sphere phenol group. Kinetic, variable temperature and labelling studies support the involvement of the attached phenol as a second coordination sphere moiety (weak acid) during H2O2 activation. Our results suggest a direct FeII → FeIVO conversion directed by the 2nd sphere phenol via the protonation of the distal O atom of the FeII/H2O2 adduct leading to a heterolytic O–O bond cleavage.

A new FeII complex with a phenol group attached as a second coordination sphere moiety activates H2O2 to yield FeIVO following a mechanism reminiscent of peroxidase enzymes.  相似文献   

2.
Reactions of nonheme FeIII–superoxo and MnIV–peroxo complexes bearing a common tetraamido macrocyclic ligand (TAML), namely [(TAML)FeIII(O2)]2? and [(TAML)MnIV(O2)]2?, with nitric oxide (NO) afford the FeIII–NO3 complex [(TAML)FeIII(NO3)]2? and the MnV–oxo complex [(TAML)MnV(O)]? plus NO2?, respectively. Mechanistic studies, including density functional theory (DFT) calculations, reveal that MIII–peroxynitrite (M=Fe and Mn) species, generated in the reactions of [(TAML)FeIII(O2)]2? and [(TAML)MnIV(O2)]2? with NO, are converted into MIV(O) and .NO2 species through O?O bond homolysis of the peroxynitrite ligand. Then, a rebound of FeIV(O) with .NO2 affords [(TAML)FeIII(NO3)]2?, whereas electron transfer from MnIV(O) to .NO2 yields [(TAML)MnV(O)]? plus NO2?.  相似文献   

3.
Ceric ammonium nitrate (CAN) or CeIV(NH4)2(NO3)6 is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)FeIII-O-CeIV(OH2)(NO3)4]+ ( 3 ), a complex obtained from the reaction of [(N4Py)FeII(NCMe)]2+ with 2 equiv CAN or [(N4Py)FeIV=O]2+ ( 2 ) with CeIII(NO3)3 in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the FeIV and CeIV centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 FeIV in 2 to S=5/2 in 3 , which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that FeIV=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier.  相似文献   

4.
Rieske dioxygenases are metalloenzymes capable of achieving cis-dihydroxylation of aromatics under mild conditions using O2 and a source of electrons. The intermediate responsible for this reactivity is proposed to be a cis-FeV(O)(OH) moiety. Molecular models allow the generation of a FeIII(OOH) species with H2O2, to yield a FeV(O)(OH) species with tetradentate ligands, or {FeIV(O); OH.} pairs with pentadentate ones. We have designed a new pentadentate ligand, mtL42, bearing a labile triazole, to generate an “in-between” situation. Two iron complexes, [(mtL42)FeCl](PF6) and [(mtL42)Fe(OTf)2]), were obtained and their reactivity towards aromatic substrates was studied in the presence of H2O2. Spectroscopic and kinetic studies reflect that triazole is bound at the FeII state, but decoordinates in the FeIII(OOH). The resulting [(mtL42)FeIII(OOH)(MeCN)]2+ then lies on a bifurcated decay pathway (end-on homolytic vs. side-on heterolytic) depending on the addition of aromatic substrate: in the absence of substrate, it is proposed to follow a side-on pathway leading to a putative (N4)FeV(O)(OH), while in the presence of aromatics it switches to an end-on homolytic pathway yielding a {(N5)FeIV(O); OH.} reactive species, through recoordination of triazole. This switch significantly impacts the reaction regioselectivity.  相似文献   

5.
Ceric ammonium nitrate (CAN) or CeIV(NH4)2(NO3)6 is often used in artificial water oxidation and generally considered to be an outer‐sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)FeIII‐O‐CeIV(OH2)(NO3)4]+ ( 3 ), a complex obtained from the reaction of [(N4Py)FeII(NCMe)]2+ with 2 equiv CAN or [(N4Py)FeIV=O]2+ ( 2 ) with CeIII(NO3)3 in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the FeIV and CeIV centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S =1 FeIV in 2 to S =5/2 in 3 , which is found to be facile despite the formal spin‐forbidden nature of this process. This observation suggests that FeIV=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier.  相似文献   

6.
We demonstrate that the devised incorporation of an alkylamine group into the second coordination sphere of an FeII complex allows to switch its reactivity with H2O2 from the usual formation of FeIII species towards the selective generation of an FeIV‐oxo intermediate. The FeIV‐oxo species was characterized by UV/Vis absorption and Mössbauer spectroscopy. Variable‐temperature kinetic analyses point towards a mechanism in which the heterolytic cleavage of the O?O bond is triggered by a proton transfer from the proximal to the distal oxygen atom in the FeII‐H2O2 complex with the assistance of the pendant amine. DFT studies reveal that this heterolytic cleavage is actually initiated by an homolytic O?O cleavage immediately followed by a proton‐coupled electron transfer (PCET) that leads to the formation of the FeIV‐oxo and release of water through a concerted mechanism.  相似文献   

7.
The [FeIV(O)(Me3NTB)]2+ (Me3NTB=tris[(1-methyl-benzimidazol-2-yl)methyl]amine) complex 1 has been shown by Mössbauer spectroscopy to have an S=1 ground state at 4 K, but is proposed to become an S=2 trigonal-bipyramidal species at higher temperatures based on a DFT model to rationalize its very high C−H bond-cleavage reactivity. In this work, 1H NMR spectroscopy was used to determine that 1 does not have C3-symmetry in solution and is not an S=2 species. Our results show that 1 is unique among nonheme FeIV=O complexes in retaining its S=1 spin state and high reactivity at 193 K, providing evidence that S=1 FeIV=O complexes can be as reactive as their S=2 counterparts. This result emphasizes the need to identify factors besides the ground spin state of the FeIV=O center to rationalize nonheme oxoiron(IV) reactivity.  相似文献   

8.
The kinetics of the Fenton reaction was studied in detail. A second reaction step in the presence of excess H2O2 is attributed to formation of the complex FeIII(?O2H)aq. Therefore, the reaction of Fe(H2O)62+ with FeIII(?O2H)aq in the presence of FeII to form FeIIIaq (k=(7.7±1.5)×105 M ?1 s?1) may contribute to the overall Fenton reaction, and could account for some of the debate in the literature concerning its detailed mechanism. If this is correct for LFeIII(?O2H)aq also, then it might be of significant biological importance. The activation parameters ΔH, ΔS, and ΔV for the Fenton reaction were measured under various experimental conditions, and are used in the mechanistic interpretation.  相似文献   

9.
The catalytic systems [(BPMEN)FeII(CH3CN)2](ClO4)2/H2O2/CH3OOH and [(TPA)FeII(CH3CN)2](ClO4)2/H2O2/CH3OOH, where BPMEN = N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)-1,2-diaminoethane and TPA = tris(2-pyridylmethyl)amine, provide selective olefin epoxidation. Proton NMR studies showed that the mononuclear iron(IV) oxo complexes [(L)FeIV=O]2+, with L = BPMEN or TPA, are present in the cited catalytic systems. These intermediates are the decomposition products of the acylperoxo complexes [(L)FeIII-O3CCH3]2+. Such a complex was observed by the 2H NMR technique at low temperatures. The [(L)FeIV=O]2+ and [(L)FeV=O]3+ oxo complexes are possible active species in the studied catalytic systems.  相似文献   

10.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

11.
Mechanism of substrate oxidations with hydrogen peroxide in the presence of a highly reactive, biomimetic, iron aminopyridine complex, [FeII(bpmen)(CH3CN)2][ClO4]2 ( 1 ; bpmen=N,N'‐dimethyl‐N,N'‐bis(2‐pyridylmethyl)ethane‐1,2‐diamine), is elucidated. Complex 1 has been shown to be an excellent catalyst for epoxidation and functional‐group‐directed aromatic hydroxylation using H2O2, although its mechanism of action remains largely unknown. 1 , 2 Efficient intermolecular hydroxylation of unfunctionalized benzene and substituted benzenes with H2O2 in the presence of 1 is found in the present work. Detailed mechanistic studies of the formation of iron(III)–phenolate products are reported. We have identified, generated in high yield, and experimentally characterized the key FeIII(OOH) intermediate (λmax=560 nm, rhombic EPR signal with g=2.21, 2.14, 1.96) formed by 1 and H2O2. Stopped‐flow kinetic studies showed that FeIII(OOH) does not directly hydroxylate the aromatic rings, but undergoes rate‐limiting self‐decomposition producing transient reactive oxidant. The formation of the reactive species is facilitated by acid‐assisted cleavage of the O? O bond in the iron–hydroperoxide intermediate. Acid‐assisted benzene hydroxylation with 1 and a mechanistic probe, 2‐Methyl‐1‐phenyl‐2‐propyl hydroperoxide (MPPH), correlates with O? O bond heterolysis. Independently generated FeIV?O species, which may originate from O? O bond homolysis in FeIII(OOH), proved to be inactive toward aromatic substrates. The reactive oxidant derived from 1 exchanges its oxygen atom with water and electrophilically attacks the aromatic ring (giving rise to an inverse H/D kinetic isotope effect of 0.8). These results have revealed a detailed experimental mechanistic picture of the oxidation reactions catalyzed by 1 , based on direct characterization of the intermediates and products, and kinetic analysis of the individual reaction steps. Our detailed understanding of the mechanism of this reaction revealed both similarities and differences between synthetic and enzymatic aromatic hydroxylation reactions.  相似文献   

12.
Two novel examples of sandwich type heteropolyanions were synthesized and characterized by X-ray crystal structure and elemental analysis as well as infrared spectroscopy. Na13[H3Cu4(H2O)2(CuW9O34)2]39H2O (1) and Na9K[Fe4(H2O)2(FeW9O34)2]32H2O (2) were prepared in aqueous solution by reaction of sodium tungstate with FeIII and CuII cations, respectively. 1 crystallizes in the monoclinic space group P21/n (a=13.054(3) Å, b=17.729(4) Å, c=20.998(4) Å, =93.50(3)°), while 2 is triclinic, space group P¯1 (a=12.316(2) Å, b=13.716(3) Å, c=14.925(3) Å, =99.36(3)°, =104.21(3)°, =101.55(3)°). Each anion consists of two [XW9O34] n moieties (X=FeIII, n=11 (1) and CuII, n=12 (2)) which can be described as -B-isomers of the defect Keggin anion. These units are linked via a belt of four FeIIIO6 or CuIIO6 groups. Two transition metal atoms fill their octahedral coordination sphere with one additional water ligand.  相似文献   

13.
Density functional theory (DFT) is employed to: 1) propose a viable catalytic cycle consistent with our experimental results for the mechanism of chemically driven (CeIV) O2 generation from water, mediated by nonheme iron complexes; and 2) to unravel the role of the ligand on the nonheme iron catalyst in the water oxidation reaction activity. To this end, the key features of the water oxidation catalytic cycle for the highly active complexes [Fe(OTf)2(Pytacn)] (Pytacn: 1‐(2′‐pyridylmethyl)‐4,7‐dimethyl‐1,4,7‐triazacyclononane; OTf: CF3SO3?) ( 1 ) and [Fe(OTf)2(mep)] (mep: N,N′‐bis(2‐pyridylmethyl)‐N,N′‐dimethyl ethane‐1,2‐diamine) ( 2 ) as well as for the catalytically inactive [Fe(OTf)2(tmc)] (tmc: N,N′,N′′,N′′′‐tetramethylcyclam) ( 3 ) and [Fe(NCCH3)(MePy2CH‐tacn)](OTf)2 (MePy2CH‐tacn: N‐(dipyridin‐2‐yl)methyl)‐N′,N′′‐dimethyl‐1,4,7‐triazacyclononane) ( 4 ) were analyzed. The DFT computed catalytic cycle establishes that the resting state under catalytic conditions is a [FeIV(O)(OH2)(LN4)]2+ species (in which LN4=Pytacn or mep) and the rate‐determining step is the O?O bond‐formation event. This is nicely supported by the remarkable agreement between the experimental (ΔG=17.6±1.6 kcal mol?1) and theoretical (ΔG=18.9 kcal mol?1) activation parameters obtained for complex 1 . The O?O bond formation is performed by an iron(V) intermediate [FeV(O)(OH)(LN4)]2+ containing a cis‐FeV(O)(OH) unit. Under catalytic conditions (CeIV, pH 0.8) the high oxidation state FeV is only thermodynamically accessible through a proton‐coupled electron‐transfer (PCET) process from the cis‐[FeIV(O)(OH2)(LN4)]2+ resting state. Formation of the [FeV(O)(LN4)]3+ species is thermodynamically inaccessible for complexes 3 and 4 . Our results also show that the cis‐labile coordinative sites in iron complexes have a beneficial key role in the O?O bond‐formation process. This is due to the cis‐OH ligand in the cis‐FeV(O)(OH) intermediate that can act as internal base, accepting a proton concomitant to the O?O bond‐formation reaction. Interplay between redox potentials to achieve the high oxidation state (FeV?O) and the activation energy barrier for the following O?O bond formation appears to be feasible through manipulation of the coordination environment of the iron site. This control may have a crucial role in the future development of water oxidation catalysts based on iron.  相似文献   

14.
Diiron(IV)-oxo species are proposed to effect the cleavage of strong C−H bonds by nonheme diiron enzymes such as soluble methane monooxygenase (sMMO) and fatty acid desaturases. However, synthetic mimics of such diiron(IV) oxidants are rare. Herein we report the reaction of (TPA*)FeII ( 1 ) (TPA*=tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) in CH3CN with 4 equiv CAN and 200 equiv HClO4 at 20 °C to form a complex with an [FeIV2(μ-O)2]4+ core. CAN and HClO4 play essential roles in this unprecedented transformation, in which the comproportionation of FeIII-O-CeIV and FeIV=O/Ce4+ species is proposed to be involved in the assembly of the [FeIV2(μ-O)2]4+ core.  相似文献   

15.
The syn and anti isomers of [FeIV(O)(TMC)]2+ (TMC=tetramethylcyclam) represent the first isolated pair of synthetic non‐heme oxoiron(IV) complexes with identical ligand topology, differing only in the position of the oxo unit bound to the iron center. Both isomers have previously been characterized. Reported here is that the syn isomer [FeIV(Osyn)(TMC)(NCMe)]2+ ( 2 ) converts into its anti form [FeIV(Oanti)(TMC)(NCMe)]2+ ( 1 ) in MeCN, an isomerization facilitated by water and monitored most readily by 1H NMR and Raman spectroscopy. Indeed, when H218O is introduced to 2 , the nascent 1 becomes 18O‐labeled. These results provide compelling evidence for a mechanism involving direct binding of a water molecule trans to the oxo atom in 2 with subsequent oxo–hydroxo tautomerism for its incorporation as the oxo atom of 1 . The nonplanar nature of the TMC supporting ligand makes this isomerization an irreversible transformation, unlike for their planar heme counterparts.  相似文献   

16.
Abstract

Two new mixed-valence iron complexes with 2-pyridyl oximes, [Fe(mpko)3Fe(H2O)2(NO3)](NO3)·2H2O (1) (mpko? = methyl(2-pyridyl)ketone oximate) and [{Fe(dpko)3}2Fe](ClO4)·4H2O (2) (dpko? = bis(2-pyridyl)ketone oximate), have been prepared by reaction of FeIII with mpkoH in methanol (1) and FeII with dpkoH in methanol/water (2). Dinuclear FeII(low-spin)FeIII(high-spin) and trinuclear FeII(low-spin)FeIII(high-spin)FeII(low-spin) cations are present in the crystal structure of 1 and 2, respectively. Intermolecular hydrogen bonds in 1 lead to weak antiferromagnetic interactions between pairs of neighboring FeIII centers, which allows observation of single-ion zero-field splitting effects.  相似文献   

17.
《Mendeleev Communications》2021,31(5):628-630
Solid phase thermolysis of pivalate complex [Fe3O(Piv)6(HPiv)3]Piv generates the [Fe3O(Piv)6]+ complex cation due to a deficiency of ligands in the coordination sphere of the metal ions. Crystallization of [Fe3O(Piv)6]+ from THF–EtOH leads to the heteroleptic complex [Fe3O(Piv)6(THF)(EtOH)(OH)] · 0.5 THF · 0.5 H2O in 69% yield, while the reaction of [Fe3O(Piv)6]+ with AgNO3 in toluene results in the complex [Fe4Ag4O2(Piv)12] · 2 PhMe with a rare combination of FeIII and AgI atoms. Crystal structures of the two new complexes have been established.  相似文献   

18.
Three new amine/pyridine FeII complexes bearing pentadentate ligand with one, two or three electron enriched 4-methoxy-3,5-dimethylpyridine were used as catalysts for the oxidation of small organic molecules by hydrogen peroxide. The distribution of products formed suggests that these ligands are not enough electron donating to promote the O−O heterolytic cleavage of the oxidant in order to generate selective FeV(O) species. Using acetic acid in the reaction mixtures results in a significant increase of the efficiency of these catalytic systems. Our investigations show that the use of AcOH leads to the protonation/dissociation of a pyridyl moiety and the formation of (N4)FeII(OAc)(OH) species. These complexes readily react with excess hydrogen peroxide to yield (N4)FeIII(OAc)(OOH) intermediates. These latter intermediates are proposed to evolve into (N4)FeIV(OAc)(O), which are more efficient than the usual (N4)FeIV(O) and (N5)FeIV(O).  相似文献   

19.
Heme and nonheme-type flavone synthase enzymes, FS I and FS II are responsible for the synthesis of flavones, which play an important role in various biological processes, and have a wide range of biomedicinal properties including antitumor, antimalarial, and antioxidant activities. To get more insight into the mechanism of this curious enzyme reaction, nonheme structural and functional models were carried out by the use of mononuclear iron, [FeII(CDA-BPA*)]2+ (6) [CDA-BPA = N,N,N’,N’-tetrakis-(2-pyridylmethyl)-cyclohexanediamine], [FeII(CDA-BQA*)]2+ (5) [CDA-BQA = N,N,N’,N’-tetrakis-(2-quinolilmethyl)-cyclohexanediamine], [FeII(Bn-TPEN)(CH3CN)]2+ (3) [Bn-TPEN = N-benzyl-N,N’,N’-tris(2-pyridylmethyl)-1,2-diaminoethane], [FeIV(O)(Bn-TPEN)]2+ (9), and manganese, [MnII(N4Py*)(CH3CN)]2+ (2) [N4Py* = N,N-bis(2-pyridylmethyl)-1,2-di(2-pyridyl)ethylamine)], [MnII(Bn-TPEN)(CH3CN)]2+ (4) complexes as catalysts, where the possible reactive intermediates, high-valent FeIV(O) and MnIV(O) are known and well characterised. The results of the catalytic and stoichiometric reactions showed that the ligand framework and the nature of the metal cofactor significantly influenced the reactivity of the catalyst and its intermediate. Comparing the reactions of [FeIV(O)(Bn-TPEN)]2+ (9) and [MnIV(O)(Bn-TPEN)]2+ (10) towards flavanone under the same conditions, a 3.5-fold difference in reaction rate was observed in favor of iron, and this value is three orders of magnitude higher than was observed for the previously published [FeIV(O)(N2Py2Q*)]2+ [N,N-bis(2-quinolylmethyl)-1,2-di(2-pyridyl)ethylamine] species.  相似文献   

20.
Non‐heme (L)FeIII and (L)FeIII‐O‐FeIII(L) complexes (L=1,1‐di(pyridin‐2‐yl)‐N,N‐bis(pyridin‐2‐ylmethyl)ethan‐1‐amine) underwent reduction under irradiation to the FeII state with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT studies support a mechanism in which irradiation results in charge‐transfer excitation of a FeIII?μ‐O?FeIII complex to generate [(L)FeIV=O]2+ (observed transiently during irradiation in acetonitrile), and an equivalent of (L)FeII. Under aerobic conditions, irradiation accelerates reoxidation from the FeII to the FeIII state with O2, thus closing the cycle of methanol oxidation to methanal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号