首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Gold nanostars(Au NSs) are asymmetric anisotropic nanomaterials with sharp edge structure. As a promising branched nanomaterial, Au NS has excellent plasmonic absorption and scattering properties. In order to tune the plasmonic photothermal and surface-enhanced Raman scattering(SERS) activity of Au NSs to obtain the desired characteristics, the effects of reagents on the local surface plasmon resonance(LSPR) bands of Au NSs were studied and the morphology and size were regulated. Nanoparticles with different sharp edges were synthesized to make their local plasmon resonance mode tunable in the visible and near-infrared region. The effects of the number and sharpness of different tips under the control of AgNO3 on the photothermal response of Au NSs and the SERS activity and their mechanism were discussed in detail. The results show that as the length of the branch tip becomes longer and the sharpness increases, the plasmonic photothermal effect of Au NSs is strengthened, and the photothermal conversion efficiency is the highest up to 40% when the length of Au NSs is the longest. Au NSs with high SERS activity are used for the Raman detection substrate. Based on this property, the quantitative detection of the pesticide thiram is achieved.  相似文献   

2.
Due to the body’s systemic distribution of photothermal agents (PTAs), and to the imprecise exposure of lasers, photothermal therapy (PTT) is challenging to use in treating tumor sites selectively. Striving for PTT with high selectivity and precise treatment is nevertheless important, in order to raise the survival rate of cancer patients and lower the likelihood of adverse effects on other body sections. Here, we studied cold atmospheric plasma (CAP) as a supplementary procedure to enhance selectivity of PTT for cancer, using the classical photothermic agent’s gold nanostars (AuNSs). In in vitro experiments, CAP decreases the effective power of PTT: the combination of PTT with CAP at lower power has similar cytotoxicity to that using higher power irradiation alone. In in vivo experiments, combination therapy can achieve rapid tumor suppression in the early stages of treatment and reduce side effects to surrounding normal tissues, compared to applying PTT alone. This research provides a strategy for the use of selective PTT for cancer, and promotes the clinical transformation of CAP.  相似文献   

3.
4.
Bismuth sulfide (Bi2S3) nanomaterials are emerging as a promising theranostic platform for computed tomography imaging and photothermal therapy of cancer. Herein, the photothermal properties of Bi2S3 nanorods (NRs) were unveiled to intensely correlate to their intrinsic deep‐level defects (DLDs) that potentially could work as electron–hole nonradiative recombination centers to promote phonon production, ultimately leading to photothermal performance. Bi2S3‐Au heterojunction NRs were designed to hold more significant DLD properties, exhibiting more potent photothermal performance than Bi2S3 NRs. Under 808 nm laser irradiation, Bi2S3‐Au NRs could trigger higher cellular heat shock protein 70 expression and more apoptotic cells than Bi2S3 NRs, and caused severe cell death and tumor growth inhibition, showing great potential for photothermal therapy of cancer guided by computed tomography imaging.  相似文献   

5.
The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near‐infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG‐b‐PCL block‐copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37 %) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications.  相似文献   

6.
7.
As hypoxia is closely associated with tumor progression, proliferation, invasion, metastasis, and strong resistance to therapy, regulating and overcoming the hypoxia tumor microenvironment are two increasingly important aspects of tumor treatment. Herein, we report a phototherapeutic platform that uses the organic photosensitizer diketopyrrolopyrrole (DPP) derivative and inorganic iridium salts (IrCl3) with photothermal activity and the capacity to decompose H2O2 efficiently. The characterization of their photophysical properties proved that DPP-Ir nanoparticles are capable of remarkable near-infrared (NIR) absorption, and compared to DPP nanoparticles, the photothermal conversion efficiency (PCE) increases from 42.1% in DPP nanoparticles to 67.0% in DPP-Ir nanoparticles. The hybrid nanoparticles utilize the catalytic decomposition of endogenous H2O2 to produce oxygen for the downregulation of the hypoxia-inducible factor 1 subunit alpha (HIF-1α) protein, which could reverse the tumor hypoxic microenvironment. Benefiting from the excellent optical properties and good biocompatibility, the hybrid platform exhibits efficient photothermal therapeutic effects as well as good biological safety. In conclusion, such a hybrid platform could improve photothermal therapy against cancer.  相似文献   

8.
基于金纳米棒的生物检测、细胞成像和癌症的光热治疗   总被引:5,自引:0,他引:5  
由于金纳米棒颗粒独特的可调的表面等离子共振特性,使得金纳米棒颗粒在纳米复合材料和功能化纳米器件的构建、纳米生物技术、生物医学等领域具有广泛而重要的应用前景。本文综述了金纳米棒颗粒的生物检测、细胞成像和癌症的光热治疗方面的最新研究进展,并介绍了金纳米棒颗粒的光学性质和金纳米棒颗粒和几种主要的表面修饰方法,对金纳米棒颗粒在生物应用过程中存在的主要问题进行了讨论。  相似文献   

9.
Photothermal therapy (PTT) is one of the most promising cancer treatment methods because hyperthermal effects and immunogenic cell death via PTT are destructive to cancer. However, PTT requires photoabsorbers that absorb near-infrared (NIR) light with deeper penetration depth in the body and effectively convert light into heat. Gold nanoparticles have various unique properties which are suitable for photoabsorbers, e.g., controllable optical properties and easy surface modification. We developed gold nanodot swarms (AuNSw) by creating small gold nanoparticles (sGNPs) in the presence of hydrophobically-modified glycol chitosan. The sGNPs assembled with each other through their interaction with amine groups of glycol chitosan. AuNSw absorbed 808-nm laser and increased temperature to 55 °C. In contrast, AuNSw lost its particle structure upon exposure to thiolated molecules and did not convert NIR light into heat. In vitro studies demonstrated the photothermal effect and immunogenic cell death after PTT with AuNSW. After intratumoral injection of AuNSw with laser irradiation, tumor growth of xenograft mouse models was depressed. We found hyperthermal damage and immunogenic cell death in tumor tissues through histological and biochemical analyses. Thiol-responsive AuNSw showed feasibility for PTT, with advanced functionality in the tumor microenvironment.  相似文献   

10.
11.
光热治疗是近年来兴起的一种治疗方法,具有靶向性强、适应性广的特点。在光热治疗中,通过光热剂对光的吸收将光能转化为热能,从而实现治疗作用,因而光热剂的光热转化性能直接决定了光热治疗的效果。光热剂的种类丰富,涵盖由无机到有机等组成和性能各异的多种材料。其中,聚吡咯具备良好的生物相容性、优异的光稳定性以及光热转化性能,在光热治疗领域受到广泛关注,是一种拥有巨大应用潜力的光热剂,然而其在光热治疗领域的发展趋势及前景却鲜有报道。本文综述了聚吡咯及其纳米复合材料的制备方法,详述了聚吡咯及其纳米复合材料在光热治疗领域中的应用情况,包括聚吡咯基纳米材料的自身性能和实际光热治疗的效果,指出以聚吡咯为基体或修饰材料来制备具有CT、磁共振、光声显影及光热治疗性能的聚吡咯基复合材料已成为发展趋势。在此基础上,本文还总结了聚吡咯基纳米复合材料在制备和应用中存在的问题,并分析了其在发展过程中遇到的挑战以及在生物医学应用中的前景。  相似文献   

12.
以氯金酸(HAuCl_4)为原料,硼氢化钠(NaBH_4)为还原剂,聚乙烯吡咯烷酮K30(PVP)为稳定剂制备了尺寸5 nm的金纳米球;以阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)为模板剂和油酸钠(NaOL)稳定剂,用种子生长法制备了不同长径比(R=2.5~4)的金纳米棒。在2 W·cm~(-2)的808 nm激光照射10 min条件下,C(0.4 mg·mL~(-1))浓度金纳米球溶液升温10.2℃,该溶液可催化血液中亚硝基硫醇释放NO,最大释放量可达1.42 nmol·L~(-1);相同光热及催化条件下,C(0.4 mg·mL~(-1))浓度金纳米棒(R=3.01)溶液升温41.3℃,该溶液催化血液中亚硝基硫醇释放NO最大释放量可达1.89 nmol·L~(-1)。金纳米球和金纳米棒的光热及催化性能随着浓度增加而增强,金纳米棒的光热及催化性能要优于金纳米球。  相似文献   

13.
Melanin is an effective absorber of light and can extend to near infrared (NIR) regions. In this study, a natural melanin is presented as a photothermal therapeutic agent (PTA) because it provides a good photothermal conversion efficiency, shows biodegradability, and does not induce long‐term toxicity during retention in vivo. Poloxamer solution containing melanin (Pol–Mel) does not show any precipitation and shows sol–gel transition at body temperature. After irradiation from 808 nm NIR laser at 1.5 W cm−2 for 3 min, the photothermal conversion efficiency of Pol–Mel is enough to kill cancer cells in vitro and in vivo. The tumor growth of mice bearing CT26 tumors treated with Pol–Mel injection and laser irradiation is suppressed completely without recurrence postirradiation. All these results indicate that Pol–Mel can become an attractive PTA for photothermal cancer therapy.

  相似文献   


14.
Superparamagnetic nanoparticles (iron oxide nanoparticles—IONs) are suitable for hyperthermia after irradiating with radiofrequency radiation. Concerning the suitability for laser ablation, IONs present a low molar absorption coefficient in the near-infrared region close to 800 nm. For this reason, they are combined with other photothermal agents into a hybrid composite. Here, we show that IONs absorb and convert into heat the infrared radiation characteristic of the so-called second-biological window (1000–1350 nm) and, in consequence, they can be used for thermal ablation in such wavelengths. To the known excellent water solubility, colloidal stability and biocompatibility exhibited by IONs, an outstanding photothermal performance must be added. For instance, a temperature increase of 36 °C was obtained after irradiating at 8.7 W cm−2 for 10 min a suspension of IONs at iron concentration of 255 mg L−1. The photothermal conversion efficiency was ~72%. Furthermore, IONs showed high thermogenic stability during the whole process of heating/cooling. To sum up, while the use of IONs in the first bio-window (700–950 nm) presents some concerns, they appear to be good photothermal agents in the second biological window.  相似文献   

15.
Simple wet chemistry has been applied to control the vertical growth of gold nanowires on a glass substrate. As a consequence, the longitudinal localized surface plasmon band position can be tuned from 656 to 1477 nm in a few minutes by simply controlling the growth rate and time. This allowed us to select the optimum conditions for maximum electromagnetic enhancement and performance in surface enhanced Raman scattering (SERS) detection. SERS measurements confirmed the uniform and reproducible distribution of the nanowires on the substrate, with the subsequent high reproducibility of hot spot formation. Detection of malachite green in water and of 1-naphthalenethiol from the gas phase are demonstrated as proof-of-concept applications of these three-dimensional SERS substrates.  相似文献   

16.
Two‐dimensional (2D) nanomaterials are currently explored as novel photothermal agents because of their ultrathin structure, high specific surface area, and unique optoelectronic properties. In addition to single photothermal therapy (PTT), 2D nanomaterials have demonstrated significant potential in PTT‐based synergistic therapies. In this Minireview, we summarize the recent progress in 2D nanomaterials for enhanced photothermal cancer therapy over the last five years. Their unique optical properties, typical synthesis methods, and surface modification are also covered. Emphasis is placed on their PTT and PTT‐synergized chemotherapy, photodynamic therapy, and immunotherapy. The major challenges of 2D photothermal agents are addressed and the promising prospects are also presented.  相似文献   

17.
The two‐dimensional (2D) vanadium carbide (V2C) MXene has shown great potential as a photothermal agent (PTA) for photothermal therapy (PTT). However, the use of V2C in PTT is limited by the harsh synthesis condition and low photothermal conversion efficiency (PTCE). Herein, we report a completely different green delamination method using algae extraction to intercalate and delaminate V2AlC to produce mass V2C nanosheets (NSs) with a high yield (90 %). The resulting V2C NSs demonstrated good structural integrity and remarkably high absorption in near infrared (NIR) region with a PTCE as high as 48 %. Systemic in vitro and in vivo studies demonstrate that the V2C NSs can serve as efficient PTA for photoacoustic (PA) and magnetic resonance imaging (MRI)‐guided PTT of cancer. This work provides a cost‐effective, environment‐friendly, and high‐yielding disassembly approach of MAX, opening a new avenue to develop MXenes with desirable properties for a myriad of applications.  相似文献   

18.
Gold nanorod (GNR)–photosensitizer (PS) complex was prepared using anionic PS (sodium salt of purpurin‐18) and cationic poly(allylamine hydrochloride) by layer‐by‐layer method, and was characterized by transmission electron microscopy, UV‐vis spectroscopy, and zeta potential. The GNR–PS complex is a promising agent for synergistic (photothermal and photodynamic) therapy (PTT/PDT), in which PTT generates heat as well as operates the PS release which maximize the following PDT activity. The combined dual therapy, PTT followed by PDT, exhibits a significantly higher photocytotoxicity result based on synergistic effect of hyperthermia from PTT as well as singlet oxygen photogeneration from PDT.  相似文献   

19.
通过简单的一步水热法制备了TiO2核壳微球,然后经过原位光还原将Ag负载于其表面,成功得到了用于有机分子检测的Ag负载TiO2核壳表面增强拉曼散射(SERS)基底。得益于TiO2核壳微球的结构,其对结晶紫(CV)分子表现出高的吸附容量。单一TiO2核壳微球对CV的检测限为10-3 M,而负载Ag以后,其对CV的检测限能达到10-7 M,增强因子(EF)可达3.49×105。优异的SERS检测性能可能归因于以下几点:(1)半导体TiO2为Ag纳米粒子提供了均匀分散的骨架,创造了高密度的热点;(2)为CV分子提供了大的吸附面积;(3)复合材料促进了激发光子的相互作用。  相似文献   

20.
This study reports the development of iron‐chelated semiconducting polycomplex nanoparticles (SPFeN) for photoacoustic (PA) imaging‐guided photothermal ferrotherapy of cancer. The hybrid polymeric nanoagent comprises a ferroptosis initiator (Fe3+) and an amphiphilic semiconducting polycomplex (SPC) serving as both the photothermal nanotransducer and iron ion chelator. By virtue of poly(ethylene glycol) (PEG) grafting and its small size, SPFeN accumulates in the tumor of living mice after systemic administration, which can be monitored by PA imaging. In the acidic tumor microenvironment, SPFeN generates hydroxyl radicals, leading to ferroptosis; meanwhile, under NIR laser irradiation, it generates localized heat to not only accelerate the Fenton reaction but also implement photothermal therapy. Such a combined photothermal ferrotherapeutic effect of SPFeN leads to minimized dosage of iron compared to previous studies and effectively inhibits the tumor growth in living mice, which is not possible for the controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号