首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-destructive analysis of the artist’s palette of ancient wooden panel paintings is a difficult task and studies are rare. Here we compare different methods of analysis of a wooden panel painting, dated to the early sixteenth century, mainly by Raman and infrared spectroscopies. Raman spectra were recorded on collected/sampled micrometric fragments using portable Raman instruments with laser excitation lines at 532 and 785 nm and transportable Raman instruments at 532, 633 and 785 nm; a fixed 1064 nm Raman spectrometer was also used. Infrared analyses were performed in Attenuated Total Reflection (ATR-FTIR) mode. Using the portable instrument, the Raman spectra evidenced white lead, calcite and vermilion only. Raman spectra recorded by transportable and fixed instruments enabled the identification of most of the artist’s palette: (i) white lead, calcite, gypsum and cerussite for white colour; (ii) vermilion, red lead, litharge, haematite for red; (iii) azurite, indigo and lapis lazuli for blue. IR spectra gave information on the organic binding media. XRF analysis on a brown pigment suggested an heterogeneous mixture of a red pigment (such as haematite and/or minium) and a green one as malachite. GC-MS analysis allowed identifying terpenic resin in the composition of the outer protective layer.  相似文献   

2.
The present paper reports the phase progression in nano-crystalline oxides PrO2 and CeO2 up to pressures of 49 GPa and 35 GPa, respectively, investigated via in situ Raman spectroscopy at room temperature. The samples were characterized at ambient conditions using X-ray diffraction (XRD), AFM, and Raman spectroscopy and were found to be cubic with fluorite structure. With an increase in applied pressure the cubic bands were seen to steadily shift to higher wavenumbers for both the samples. However, we observed the appearance of a number of new peaks around a pressure of about 34.7 GPa in CeO2 and 33 GPa in PrO2 which were characteristic of an orthorhombic α-PbCl2 type structure. The mode Gruneisen parameters for both the phases were obtained from the pressure dependence of frequency shifts. On decompression, the high pressure phase existed down to a total release of pressure.  相似文献   

3.
In this study, the capability of a Layered Double Hydroxide (LDH) to promote the modified-release of Sulindac (Sul), a non-steroid anti-inflammatory drug, was followed by Raman spectroscopy through in vitro and in vivo assays. The drug and the LDH-Sul system were pressed into pellets and their dissolution under controlled conditions was monitored in vitro for 80 h. For the in vivo assays, LDH-drug and LDH-Cl (with chloride in the interlayer space) pellets were implanted between the external and internal oblique muscles of Wistar rats. The pellets were removed after 7, 21, 28 and 35 days from implantation and up to 21 days there was an increase in the amount of intercalated carbonate ions as followed over time by Raman microscopy. The carbonate ions are from the extracellular fluid (conjunctive tissue) and replace the chloride ions between the LDH layers. The same kind of ion exchange was observed for LDH-Sulindac: ca. 50% of the drug was released in vivo after 21 days, whereas in vitro the same amount of drug was delivered within 24 h. The release kinetics was much slower in the in vivo assay due to a significantly smaller hydrodynamic interaction inside the muscle.  相似文献   

4.
The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.  相似文献   

5.
Determination of the total tannin of white and red rind pomegranate (Punica granatum L.) has been carried out by colorimetry method using reagent 1,10 phenantroline. This method is based on reduction of iron (III) into iron (II) by tannin at temperature 800C for 20 min. Then the formed of iron (II) was reacted with 1,10 phenantroline to form orange red colour complex that could be measured by spectrophotometer visible at maximum absorption wavelength of 508 nm. The limit of detection (LOD) and the limit of quantitation (LOQ) obtained were 0.34 μg/mL and 1.14 μg/mL, respectively. This result was found to be linier with R value of 0.9984; accuracy as percent recovery was 84.69 ± 0.85% and coefficient of variant (KV) was 1.003% for white rind pomegranate while red rind pomegranate percent recovery was 84.38 ± 0,45% and coefficient of variant (KV) was 0.53%. The total tannin of white rind pomegranate was 18.28 ± 0.072%b/b and red rind pomegranate was 17.33 ± 0.081%b/b  相似文献   

6.
2-Bromopyridine reacts with elemental phosphorus (red or white) in a superbasic KOH/DMSO(H2O) suspension at 100 °C (for red phosphorus) and 75 °C (for white phosphorus) over 3 h to afford tris(2-pyridyl)phosphine in a 62% yield (from red phosphorus) and a 50% yield (from white phosphorus). Under microwave assistance, the reaction with red phosphorus takes just 20 min to produce tris(2-pyridyl)phosphine in 53% yield. A hitherto unknown complex, [Pd(PPy3)2Cl2]·CH2Cl2, synthesized from tris(2-pyridyl)phosphine and PdCl2, has the cis-configuration; this is unusual for bis(phosphino)palladium dichloride complexes.  相似文献   

7.
Cryogenic heat capacities determined by equilibrium adiabatic calorimetry from T = (6 to 350) K on Li, Na, and K disilicates in both crystalline and vitreous phases are adjusted to end member composition and the vitreous/crystal difference ascertained. The thermophysical properties of these and related phases are estimated, compared, and updated. The values at T = 298.15 K of {S(T)  S(0)}/R for stoichiometric compositions of alkali disilicate (M2O · 2SiO2): vitreous, crystal: Li, 16.30, 14.65; Na, 20.67, 19.47; and K, 23.26, 23.00. Entropy differences confirm greater disorder in the vitreous compounds compared with the crystalline compounds. The entropy data also show that disorder increases with decreasing atomic mass of the alkali ion.  相似文献   

8.
9.
We investigate the nature of bonding and charge states in (U1−yCey)O2 (y = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) by Raman spectroscopy. Raman spectrum of UO2 exhibits two prominent bands below 1000 cm−1, a F2g mode at 446 cm−1 and a F1u LO mode at 578 cm−1. As y is increased from 0 to 0.6, the F1u exhibits a large blue shift of 90 cm−1, and from y = 0.6 to 1.0, a red shift of 54 cm−1. We show that our results can be interpreted as arising from anisotropic compression/relaxation of the lattice under Ce substitution and this can give an indication of its charge states. Alternate interpretations have been given in the literature on the effect of substituents and dopants to the Raman spectra of UO2 and CeO2. The present interpretation of chemical stress effects can be taken as another plausible explanation.  相似文献   

10.
To understand pressure effects on dimer structure stability, Raman and FTIR spectroscopies were used to examine changes in H-bonded dimers of benzoic acid (BA). Experiments were performed on single crystals compressed to 33 GPa in a diamond anvil cell (DAC). Several changes in Raman spectra were observed in the range 6–8 GPa indicating modification in the dimer structure suggesting the lowering of molecular symmetry. Pressure increase above 15 GPa induced strong luminescence and a gradual change of the crystal color from white to yellow/brownish. FTIR measurements on the sample released from 33 GPa indicated formation of a new compound. It is proposed that molecules of this compound are composed of the hydroxyl group associated with alcohol, carbonyl group associated with ketone, and the sp3 hydrocarbon groups. This study demonstrates that sufficient high pressure compression and subsequent decompression can lead to significant changes in the H-bonded dimer structure, including the breaking of bonds and formation of new chemical compound.  相似文献   

11.
《Vibrational Spectroscopy》2002,28(2):209-221
Syngenite (K2Ca(SO4)2·H2O), formed during treatment of manure with sulphuric acid, was studied by infrared, near-infrared (NIR) and Raman spectroscopy. Cs site symmetry was determined for the two sulphate groups in syngenite (P21/m), so all bands are both infrared and Raman active. The split ν1 (two Raman+two infrared bands) was observed at 981 and 1000 cm−1. The split ν2 (four Raman+four infrared bands) was observed in the Raman spectrum at 424, 441, 471 and 491 cm−1. In the infrared spectrum, only one band was observed at 439 cm−1. From the split ν3 (six Raman+six infrared) bands three 298 K Raman bands were observed at 1117, 1138 and 1166 cm−1. Cooling to 77 K resulted in four bands at 1119, 1136, 1144 and 1167 cm−1. In the infrared spectrum, five bands were observed at 1110, 1125, 1136, 1148 and 1193 cm−1. From the split ν4 (six infrared+six Raman bands) four bands were observed in the infrared spectrum at 604, 617, 644 and 657 cm−1. The 298 K Raman spectrum showed one band at 641 cm−1, while at 77 K four bands were observed at 607, 621, 634 and 643 cm−1. Crystal water is observed in the infrared spectrum by the OH-liberation mode at 754 cm−1, OH-bending mode at 1631 cm−1, OH-stretching modes at 3248 (symmetric) and 3377 cm−1 (antisymmetric) and a combination band at 3510 cm−1 of the H-bonded OH-mode plus the OH-stretching mode. The near-infrared spectrum gave information about the crystal water resulting in overtone and combination bands of OH-liberation, OH-bending and OH-stretching modes.  相似文献   

12.
A Raman spectroscopy study at room temperature was carried out on (Pb1−xLax)(Zr0.90Ti0.10)1−x/4O3 ceramics (x = 2, 3, 4 at%). The results were analyzed considering the x-ray patterns at room temperature showing a mixture of two phases: a rombohedral-ferroelectric phase and an orthorhombic-antiferroelectric, increasing the% of the second one with the lanthanum concentration. For x = 3 at%, the analysis was also carried out in a wide temperature range. Two anomalies were evaluated, one around 363 K, which has been associated to a ferroelectric-antiferroelectric phase transition; the second one around 430 K, which has been associated to a transition from an incommensurable state to a ferroelectric phase.  相似文献   

13.
Si- and Cr-containing C films were deposited by magnetron sputtering combined with CVD onto silicon wafers. The composition and chemical structure were characterized by X-ray Photoelectron Spectroscopy (XPS) and nanomechanical properties by depth-sensing hardness and scratch techniques.The incorporated Si and Cr are preferentially bonded to carbon, in accordance with simplified thermodynamic calculations and as manifested by the XPS chemical shifts. At relatively high Cr- and low Si-content silicides (CrxSi) may also form as indicated by X-ray induced Auger electron spectroscopy. The chromium content in the C–Si–Cr films varied between 1 and 55 at% while the silicon content in the same films between 25 and 0 at%. For comparison two-component films of Si–C and Cr–C were also deposited with Si-content up to 42 at% and Cr-content up to 55 at% by varying the input power of the magnetrons.The nanohardness (H) and reduced modulus (E) were higher for all the films than that of the silicon substrate being 10 GPa, 127 GPa, respectively. Interestingly, the H and E of the three-component CrSiC films were almost invariant of the changes of the components' concentration within the indicated range and varied between 13–16 GPa and 120–140 GPa. H and E values for the two-component Cr–C films were much higher, reaching about 22 GPa and 170 GPa, respectively.  相似文献   

14.
A novel helical peptide containing β-(3-pyirdyl)-l-alanine (Pal) and l-glutamic acid (Glu) residues has been designed and successfully prepared as a model ligand of metalloenzyme active sites. The helical peptide, Boc-Leu-Aib-Glu-Leu-Leu-Pal-Aib-Leu-OEt (1) (Boc = tert-butoxycarbonyl, Aib = 2-aminoisobutylic acid) yields fine crystals as an acetnitrile solvate. The metal ion binding affinities of 1 were tested for CoCl2 using UV/vis, CD, Raman, and 1H NMR spectroscopies. The non-linear fitting calculations have revealed the 1:1 complex for CoCl2 with the binding constant 3.6 (±0.7) × 102 M−1.  相似文献   

15.
The small-pore zirconosilicate Na2ZrSi2O7·H2O crystallizes in monoclinic system with space group C2/c, a = 5.4715(4); b = 9.4111(6); c = 13.0969(8) Å, β = 92.851(7)°. Its framework consists of layers built of ZrO6 octahedra and SiO4 tetrahedra and forming condensed [Si2O7] pyrogroups by connection. The sodium ions and water molecules are placed in channels set up between the layers. The stoichiometric and structural similarities of the studied phase with anhydrous compounds having general chemical formula A2(3)MT2O7 (A = Na,K; M = Zr,Lu,Sc; T = Si,Ge) are discussed. The topological relationship of their structures is interpreted in the light of spatial combination of silicon and zirconium polyhedra as basic building units into larger composite building units and their three-dimensional arrangement.  相似文献   

16.
In this paper, nine beads from excavations in the Valongo Wharf, located in the harbor area of Rio de Janeiro, Brazil that were utilized as ornaments by Africans and Afrodescendants during the 19th century were analyzed by Raman and X-Ray Fluorescence (XRF) spectroscopy. All samples in the analysis showed Raman spectra with two bands of maximum intensity around 1000 and 500 cm−1 related to the maximum stretching (νmax) and bending mode (δ), respectively, of the tetrahedral network of the SiO4 present in the glass matrix. However, there is variation in the intensity and position of the bands that are directly associated with the burning process and the raw material utilized in the manufacture of the beads. Based on the polymerization index (Ip = A500/A1000), it is possible to relate these two parameters. By establishing a correlation among the Ip and the νmax band, the beads were classified into groups. The results reveal that the beads’ base paste exhibits differences, allowing their classification into groups according to the manufacturing process. Based on the combination of the elemental characterization and Raman spectroscopy results, it was also possible to conclude that European and Asian countries are the possible origins of the beads.  相似文献   

17.
《Vibrational Spectroscopy》2008,46(2):117-121
Minerals have been used as pigments for thousands of years. Red and yellow pigments are generally associated with iron oxides or, specifically, hematite (α-Fe2O3) and goethite (α-FeOOH). It is well known that, under heating, goethite dehydrates forming hematite. An interesting question yet to be answered is whether the pre-historical artists used this knowledge to obtain other shades of red and yellow or used the raw mineral directly.Raman spectroscopy was employed to address this question and XRD, TEM and TG were used as supporting techniques. Ex situ and in situ Raman spectra were obtained and it was observed that in the 250–300 °C temperature range, broad hematite features appears as a consequence of goethite dehydration. In the spectra of the heated sample a band at 657 cm−1 is of particular interest, as it is much more intense than in natural hematite; the possibility that it could be assigned as a magnetite band was discarded. At higher temperatures (900–1000 °C) the disordered structure is perfected and a Raman spectrum similar to a crystalline natural hematite sample is obtained.Temperatures in the 600–700 °C range can be easily reached, thus disordered hematite could be obtained from goethite heating even in ancient times, however, heat is not the only agent able to produce disordered hematite, since grinding, biodegradation and weathering can produce the same effect. Raman spectra obtained from weathered samples are also representative of disordered hematite.The data here reported indicate that it is not possible to differentiate heated goethite from other disordered hematites.  相似文献   

18.
High pressure Raman spectroscopic measurements on nearly zero thermal expansion material TaO2F are carried out up to 19 GPa. Earlier report of high pressure X-ray diffraction studies shows two phase transitions, one at 0.7 and the other at 4 GPa with rhombohedral (R-3c) structure above 4 GPa, but the structure between 0.7 GPa and 4 GPa remained unclear. In high pressure Raman measurements, a reversible, cubic to rhombohedral phase transformation onsets around 0.8 GPa and gets completed at 4.4 GPa with all four predicted normal modes corresponding to R-3c phase and retaining the structure up to 19 GPa. A mixture of cubic and rhombohedral phases is observed between 0.8 and 4.4 GPa. Optically silent modes in the ambient cubic structure exhibit strong, broad Raman bands due to anionic (O/F) disorder in TaO2F altering the local symmetry and allowing for first order Raman scattering. On compression, these disorder induced first order Raman bands gradually decrease in intensity and disappear around 4.4 GPa due to inhibition of local distortion caused by anions, and the modes corresponding to the rhombohedral phase appear. This is a clear evidence of disorder-free rhombohedral single phase exists above 4.4 GPa in agreement with the reported HPXRD results. Temperature dependent Raman measurements reveal that the intensities of Raman bands remain almost unchanged with rise in temperature indicating static disorder in TaO2F. Disorder-induced first order Raman modes at 176, 212, 381 and 485 cm−1 soften with increase in pressure whereas the other modes show low positive Gruneisen parameter. The thermal expansion coefficient calculated using these Gruneisen parameters (−2.91 ppm K−1) is in fair agreement with the reported values (−1 to +1 ppm K−1). On the other hand, all four modes of disorder-free rhombohedral phase show the usual hardening behavior with increase in pressure contributing to positive thermal expansion.  相似文献   

19.
This study evaluated effect of gamma irradiation on survival of Salmonella Typhimurium and Staphylococcus aureus on lettuce and damage of cell envelope. S. Typhimurium and S. aureus were inoculated on red leaf lettuce, and they were irradiated at 0, 0.5, 1, 1.5, 2, 2.5, and 3 kGy, and the samples were then stored at 7 and 25 °C for 7 days. Survival of S. Typhimurium and S. aureus were enumerated on xylose lysine deoxycholate agar and Baird–Parker agar, respectively. D10 value (dose required to reduce 1 log CFU/leaf) was calculated, and kinetic parameters (maximum specific growth rate; μmax and lag phase duration; LPD) were calculated by the modified Gompertz model. In addition, cell envelope damage of the pathogens was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). D10 values were 0.35 and 0.33 kGy for S. Typhimurium and S. aureus, respectively. During storage at 7 °C, S. Typhimurium and S. aureus had significant (P<0.05) growth only on non-irradiated samples up to about 2.5 and 4 log CFU/leaf at 0.42 and 1.28 log CFU/leaf/day of μmax, respectively. At 25 °C, cell counts of S. Typhimurium and S. aureus on the samples irradiated at 0 and 0.5 kGy increased (P<0.05) up to 3–6 log CFU/leaf. The μmax of both pathogens were higher in 0 kGy (1.08–2.27 log CFU/leaf/day) and 0.5 kGy (0.58–0.92 log CFU/leaf/day), and LPDs ranged from 1.53 to 3.14 day. SEM and TEM observations showed that cells irradiated at 1.5 and 3 kGy showed disrupted cell membrane. These results indicate that gamma irradiation could be a useful decontamination technology to improve food safety of lettuce by destroying cells of S. Typhimurium and S. aureus.  相似文献   

20.
Thick matrices of fibrinogen with incorporation of a matrix metalloproteinase inhibitor were covalently bonded on functionalized silicon surfaces using an ethyl-3-dimethyl-aminopropyl-carbodiimide and N-hydroxy-succinimide affinity ligand coupling chemistry. The growth of the structure was followed in situ using dynamic ellipsometry and characterized at steady-state with spectroscopic ellipsometry. The growth was compared with earlier work on ex situ growth of fibrinogen layers studied by single wavelength ellipsometry. It is found that in situ growth and ex situ growth yield different structural properties of the formed protein matrix. Fibrinogen matrices with thicknesses up to 58 nm and surface mass densities of 1.6 μg/cm2 have been produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号