首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In overcoming the Li+ desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method. By forming a low-swelling, Li3PO4-rich SEI, the electrolyte-consuming parasitic reactions and solvent co-intercalation at graphite-electrolyte interface are suppressed, which contributes to efficient Li+ transport, reversible Li+ (de)intercalation and stable structural evolution of graphite anode in high-energy Li-ion batteries at a low temperature of −20 °C.  相似文献   

2.
Constructing a stable and robust solid electrolyte interphase (SEI) is crucial for achieving dendrite-free sodium metal anodes and high-performance sodium batteries. However, maintaining the integrity of SEI during prolonged cycle life under high current densities poses a significant challenge. In this study, we propose an integrated multifunctional SEI layer with inorganic/organic hybrid construction (IOHL−Na) to enhance the durability of sodium metal anode during reduplicative plating/stripping processes. The inorganic components with high mechanical strength and strong sodiophilicity demonstrate optimized ionic conduction efficiency and dendrite inhibition ability. Simultaneously, the organic component contributes to the formation of a dense and elastic membrane structure, preventing fracture and delamination issues during volume fluctuations. The symmetrical batteries of IOHL−Na achieve stable cycling over 2000 hours with an extremely low voltage hysteresis of around 15.8 mV at a high current density of 4 mA cm−2. Moreover, the Na−O2 batteries sustain exceptional long-term stability and impressive capacity retention, exploiting a promising approach for constructing durable SEI and dendrite-free sodium metal anodes.  相似文献   

3.
Utilization of lithium (Li) metal anode is highly desirable for achieving high energy density batteries. Even so, the unavoidable features of Li dendritic growth and inactive Li are still the main factors that hinder its practical application. During plating and stripping, the solid electrolyte interphase (SEI) layer can provide passivation, playing an important role in preventing direct contact between the electrolyte and the electrode in Li metal batteries. Because of complexities of the electrolyte chemical and electrochemical reactions, the various formation mechanisms for the SEI are still not well understood. What we do know is that a strategic artificial SEI achieved through additives electrolyte can suppress the Li dendrites. Otherwise, the dendrites keep generating an abundance of irreversible Li, resulting in severe capacity loss, internal short-circuiting, and cell failure. In this minireview, we focus on the phenomenon of dendritic Li-growth and provide a brief overview of SEI formation. We finally provide some clear insights and perspectives toward practical application of Li metal batteries.  相似文献   

4.
Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs.  相似文献   

5.
郑杰允  郑浩  汪锐  李泓  陈立泉 《电化学》2013,19(6):530-536
利用原子力显微镜(AFM)力曲线模式来研究锂离子电池硅负极材料在含碳酸亚乙烯酯添加剂(VC)电解质首周循环时固态电解质相表面膜(SEI膜)的三维结构. 测试表明SEI膜具有多层结构,同时得到SEI膜厚度、杨氏模量以及覆盖度在首周循环过程中的变化,采用三维图呈现了硅材料表面膜的分布.  相似文献   

6.
The advent of wearable electronics has strongly stimulated advanced research into the exploration of flexible zinc−air batteries (ZABs) with high theoretical energy density, high inherent safety, and low cost. However, the half-open battery structure and the high concentration of alkaline aqueous environment pose great challenges on the electrolyte retention capability and the zinc anode stability. Herein, a starch-based superabsorbent hydrogel polymer electrolyte (SSHPE) with high ionic conductivity, electrolyte absorption and retention capabilities, strong alkaline resistance and high zinc anode stability has been designed and applied in ZABs. Experimental and calculational analyses probe into the root of the superiority of SSHPEs, confirming the significance of the carboxyl functional groups along their polymer chains. These features endow the as-fabricated ZAB a long cycle life of 300 h, much longer than that with commonly used poly(vinyl alcohol)-based electrolyte.  相似文献   

7.
The solid-electrolyte interphase (SEI) is key to stable, high voltage lithium-ion batteries (LIBs) as a protective barrier that prevents electrolyte decomposition. The SEI is thought to play a similar role in highly concentrated water-in-salt electrolytes (WISEs) for emerging aqueous batteries, but its properties remain unknown. In this work, we utilized advanced scanning electrochemical microscopy (SECM) and operando electrochemical mass spectrometry (OEMS) techniques to gain deeper insight into the SEI that occurs within highly concentrated WISEs. As a model, we focus on a 55 mol/kg K(FSA)0.6(OTf)0.4 electrolyte and a 3,4,9,10-perylenetetracarboxylic diimide negative electrode. For the first time, our work showed distinctly passivating structures with slow apparent electron transfer rates alike to the SEI found in LIBs. In situ analyses indicated stable passivating structures when PTCDI was stepped to low potentials (≈−1.3 V vs. Ag/AgCl). However, the observed SEI was discontinuous at the surface and H2 evolution occurred as the electrode reached more extreme potentials. OEMS measurements further confirmed a shift in the evolution of detectable H2 from −0.9 V to <−1.4 V vs. Ag/AgCl when changing from dilute to concentrated electrolytes. In all, our work shows a combined approach of traditional battery measurements with in situ analyses for improving characterization of other unknown SEI structures.  相似文献   

8.
锂金属由于其高比容量和低电极电势等优点被认为是下一代高比能量电池体系中最有潜力的负极材料。然而由于锂金属的高活性,锂负极在循环过程中会产生大量的枝晶,导致SEI(solid-electrolyte interphase)破裂,并且枝晶增加了电极与电解液的接触面积,使得副反应进一步增加。此外,脱落的枝晶形成死锂,从而降低电池的充放电库仑效率。并且不可控的锂枝晶持续生长会刺穿隔膜引发电池短路,伴随着电池热失控等安全问题。本综述基于锂负极存在的主要挑战,结合理解锂枝晶的成核生长模型等机理总结并深度分析近些年来在液态和固态电解质体系中改善锂金属负极的主要策略及其作用机理,为促进高比能量锂金属电池的应用提供借鉴参考作用。  相似文献   

9.
Na metal anode, benefiting from its high theoretical capacity and lowest electrochemical potential, is one of the most favorable candidates for future Na-based batteries with high energy density. Dendrite growth, volume change and high reactivity are the formidable challenges in terms of good cycling performance and high Coulombic efficiency as well as an expected safety guarantee of Na metal anode for the practical application. Solid electrolyte interphase(SEI) layer as an indispensable component of a battery,its formation and stability play the critical role in the feasibility of Na metal anode. In this review, we first discuss the current consideration and challenges of Na metal anode, and then summarize several strategies to suppress dendrite growth and improve electrochemical performance, including interface engineering, electrolyte composition, electrode construction, and so on. Finally, the conclusion and future perspective of potential development on Na metal anode are proposed.  相似文献   

10.
The activation characteristics and the effects of current densities on the formation of a separate LiCoO2 and graphite electrode were investigated and the behavior also was compared with that of the full LiCoO2/graphite batteries using various electrochemical techniques. The results showed that the formation current densities obviously influenced the electrochemical impedance spectrum of Li/graphite, LiCoO2/Li, and LiCoO2/graphite cells. The electrolyte was reduced on the surface of graphite anode between 2.5 and 3.6 V to form a preliminary solid electrolyte interphase (SEI) film of anode during the formation of the LiCoO2/graphite batteries. The electrolyte was oxidized from 3.95 V vs Li+/Li on the surface of LiCoO2 to form a SEI film of cathode. A highly conducting SEI film could be formed gradually on the surface of graphite anode, whereas the SEI film of LiCoO2 cathode had high resistance. The LiCoO2 cathode could be activated completely at the first cycle, while the activation of the graphite anode needed several cycles. The columbic efficiency of the first cycle increased, but that of the second decreased with the increase in the formation current of LiCoO2/graphite batteries. The formation current influenced the cycling performance of batteries, especially the high-temperature cycling performance. Therefore, the batteries should be activated with proper current densities to ensure an excellent formation of SEI film on the anode surface.  相似文献   

11.
Zinc metal battery (ZMB) is promising as the next generation of energy storage system, but challenges relating to dendrites and corrosion of the zinc anode are restricting its practical application. Here, to stabilize Zn anode, we report a controlled electrolytic method for a monolithic solid-electrolyte interphase (SEI) via a high dipole moment solvent dimethyl methylphosphonate (DMMP). The DMMP-based electrolytes can generate a homogeneous and robust phosphate SEI (Zn3(PO4)2 and ZnP2O6). Benefiting from the protecting impact of this in situ monolithic SEI, the zinc electrode exhibits long-term cycling of 4700 h and a high Coulombic efficiency 99.89 % in Zn|Zn and Zn|Cu cell, respectively. The full V2O5|Zn battery with DMMP-H2O hybrid electrolyte exhibits a high capacity retention of 82.2 % following 4000 cycles under 5 A g−1. The first success in constructing the monolithic phosphate SEI will open a new avenue in electrolyte design for highly reversible and stable Zn metal anodes.  相似文献   

12.
Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5-trioxane (TO) and 1,2-dimethoxyethane (DME) as co-solvents is proposed to construct a high-mechanical-stability SEI by enriching organic components in Li−S batteries. The high-mechanical-stability SEI works compatibly in Li−S batteries. TO with high polymerization capability can preferentially decompose and form organic-rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li−S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO-based electrolyte. Furthermore, a 417 Wh kg−1 Li−S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li−S batteries.  相似文献   

13.
In aqueous electrolytes, the uncontrollable interfacial evolution caused by a series of factors such as pH variation and unregulated Zn2+ diffusion would usually result in the rapid failure of metallic Zn anode. Considering the high correlation among various triggers that induce the anode deterioration, a synergistic modulation strategy based on electrolyte modification is developed. Benefitting from the unique pH buffer mechanism of the electrolyte additive and its capability to in situ construct a zincophilic solid interface, this synergistic effect can comprehensively manage the thermodynamic and kinetic properties of Zn anode by inhibiting the pH variation and parasitic side reactions, accelerating de-solvation of hydrated Zn2+, and regulating the diffusion behavior of Zn2+ to realize uniform Zn deposition. Thus, the modified Zn anode can achieve an impressive lifespan at ultra-high current density and areal capacity, operating stably for 609 and 209 hours at 20 mA cm−2, 20 mAh cm−2 and 40 mA cm−2, 20 mAh cm−2, respectively. Based on this exceptional performance, high loading Zn||NH4V4O10 batteries can achieve excellent cycle stability and rate performance. Compared with those previously reported single pH buffer strategies, the synergistic modulation concept is expected to provide a new approach for highly stable Zn anode in aqueous zinc-ion batteries.  相似文献   

14.
Zn metal as one of the promising anodes of aqueous batteries possesses notable advantages, but it faces severe challenges from severe side reactions and notorious dendrite growth. Here, ultrathin nanosheets of α-zirconium phosphate (ZrP) are explored as an electrolyte additive. The nanosheets not only create a dynamic and reversible interphase on Zn but also promote the Zn2+ transportation in the electrolyte, especially in the outer Helmholtz plane near ZrP. Benefited from the enhanced kinetics and dynamic interphase, the pouch cells of Zn||LiMn2O4 using this electrolyte remarkably improve electrochemical performance under harsh conditions, i.e. Zn powders as the Zn anode, high mass loading, and wide temperatures. The results expand the materials available for this dynamic interphase, provide an insightful understanding of the enhanced charge transfer in the electrolyte, and realize the combination of dynamic interphase and enhanced kinetics for all-climate performance.  相似文献   

15.
The stability of high-energy-density lithium metal batteries depends on the uniformity of solid electrolyte interphase (SEI) on lithium metal anodes. Rationally improving SEI uniformity is hindered by poorly understanding the effect of structure and components of SEI on its uniformity. Herein, a bilayer structure of SEI formed by isosorbide dinitrate (ISDN) additives in localized high-concentration electrolytes was demonstrated to improve SEI uniformity. In the bilayer SEI, LiNxOy generated by ISDN occupies top layer and LiF dominates bottom layer next to anode. The uniformity of lithium deposition is remarkably improved with the bilayer SEI, mitigating the consumption rate of active lithium and electrolytes. The cycle life of lithium metal batteries with bilayer SEI is three times as that with common anion-derived SEI under practical conditions. A prototype lithium metal pouch cell of 430 Wh kg−1 undergoes 173 cycles. This work demonstrates the effect of a reasonable structure of SEI on reforming SEI uniformity.  相似文献   

16.
Graphite anodes are prone to dangerous Li plating during fast charging, but the difficulty to identify the rate-limiting step has made a challenging to eliminate Li plating thoroughly. Thus, the inherent thinking on inhibiting Li plating needs to be compromised. Herein, an elastic solid electrolyte interphase (SEI) with uniform Li-ion flux is constructed on graphite anode by introducing a triglyme (G3)-LiNO3 synergistic additive (GLN) to commercial carbonate electrolyte, for realizing a dendrite-free and highly-reversible Li plating under high rates. The cross-linked oligomeric ether and Li3N particles derived from the GLN greatly improve the stability of the SEI before and after Li plating and facilitate the uniform Li deposition. When 51 % of lithiation capacity is contributed from Li plating, the graphite anode in the electrolyte with 5 vol.% GLN achieved an average 99.6 % Li plating reversibility over 100 cycles. In addition, the 1.2-Ah LiFePO4 | graphite pouch cell with GLN-added electrolyte stably operated over 150 cycles at 3 C, firmly demonstrating the promise of GLN in commercial Li-ion batteries for fast-charging applications.  相似文献   

17.
The pulverization of alloying anodes significantly restricts their use in lithium-ion batteries (LIBs). This study presents a dual-phase solid electrolyte interphase (SEI) design that incorporates finely dispersed Al nanoparticles within the LiPON matrix. This distinctive dual-phase structure imparts high stiffness and toughness to the integrated SEI film. In comparison to single-phase LiPON film, the optimized Al/LiPON dual-phase SEI film demonstrates a remarkable increase in fracture toughness by 317.8 %, while maintaining stiffness, achieved through the substantial dissipation of strain energy. Application of the dual-phase SEI film on an Al anode leads to a 450 % enhancement in cycling stability for lithium storage in dual-ion batteries. A similar enhancement in cycling stability for silicon anodes, which face severe volume expansion issues, is also observed, demonstrating the broad applicability of the dual-phase SEI design. Specifically, homogeneous Li−Al alloying has been observed in conventional LIBs, even when paired with a high mass loading LiNi0.5Co0.3Mn0.2O2 cathode (7 mg cm−2). The dual-phase SEI film design can also accelerate the diffusion kinetics of Li-ions through interface electronic structure regulation. This dual-phase design can integrate stiffness and toughness into a single SEI film, providing a pathway to enhance both the structural stability and rate capability of alloying anodes.  相似文献   

18.
Aqueous zinc metal batteries (AZMBs) are deemed a promising technology for electrochemical energy storage due to their high safety, low cost, and high energy density. However, AZMBs still suffer from severe side reactions, including Zn dendrite formation and intrinsic hydrogen evolution reaction. In contrast to the solid-electrolyte interphase (SEI) layer that stabilizes Li/Na/K metal anodes in organic electrolytes, it is difficult to form an SEI layer on the Zn surface because of the difficulty in decomposing the salt anions within the narrow electrochemical potential window of water. A team from the University of Adelaide reports a novel pure or hybrid electrolyte with H2O by using dimethyl methylphosphonate (DMMP) as solvent or co-solvent to construct a uniform and stable phosphate-based SEI layer (ZnP2O6 and Zn3(PO4)2). As a result, high Coulombic efficiencies and improved capacity retentions are obtained.  相似文献   

19.
Micro-sized silicon (mSi) anodes offer advantages in cost and tap density over nanosized counterparts. However, its practical application still suffers from poor cyclability and low initial and later-cycle coulombic efficiency (CE), caused by the unstable solid electrolyte interphase (SEI) and irreversible lithiation of the surface oxide layer. Herein, a bifunctional fluorine (F)-free electrolyte was designed for the mSi anode to stabilize the interphase and improve the CE. A combined analysis revealed that this electrolyte can chemically pre-lithiate the native oxide layer by the reductive LiBH4, and relieve SEI formation and accumulation to preserve the internal conductive network. The significance of this F-free electrolyte brings unprecedented F-free interphase that also enables the high-performance mSi electrode (80 wt % mSi), including high specific capacity of 2900 mAh/g, high initial CE of 94.7 % and excellent cyclability capacity retention of 94.3 % after 100 cycles at 0.2 C. This work confirms the feasibility of F-free interphase, thus opening up a new avenue toward cost-advantaged and environmentally friendly electrolytes for more emerging battery systems.  相似文献   

20.
Lithium-ion batteries operate beyond the thermodynamic stability of the aprotic organic electrolyte used and electrolyte decomposition occurs at both electrodes. The electrolyte must therefore be composed in a way that its decomposition products form a film on the electrodes which stops the decomposition reactions but is still permeable to the Li(+) cations which are the charge carriers. At the graphite anode, this film is commonly referred to as a solid electrolyte interphase (SEI). Aprotic organic compounds containing vinylene groups can form an effective SEI on a graphitic anode. As examples, vinyl acetate (VA) and acrylonitrile (AN) have been investigated by in-situ Fourier transform infrared (FTIR) spectroscopy in a specially developed IR cell. The measurements focus on electrolyte decomposition and the mechanism of SEI formation in the presence of VA and AN. We conclude that cathodic reduction of the vinylene groups (i.e., via reduction of the double bond) in the electrolyte additives is the initiating and thus a most important step of the SEI-formation process, even in an electrolyte which contains only a few percent (i.e. electrolyte additive amounts) of the compound. The possibility of electropolymerization of the vinylene monomers in the battery electrolytes used is critically discussed on the basis of the IR data obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号