首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this study, a convenient method of preparing the substrate is proposed with one-pot synthesis of silver colloid under body heat, and the SERS detection uses the fresh substrate to avoid the drawback of substrates' short life of use. The synthesis of silver colloid is carried out in a 10 mL vial by using ascorbic acid as a reductant and trisodium citrate as a stabilizer. The vial is grasped with the palm of the experimenter for several minutes without shaking. The proposed method is simple, rapid, green energy and cost-effective. By adjusting the concentration of trisodium citrate, not only the particle size can be controlled from about 110 nm to 50 nm but also the homogeneity of nanoparticles can be improved. As a SERS substrate, the silver colloid has high batch reproducibility and showed good SERS activity. The relative standard deviation between different manufacturers is 5.51% when the substrate of silver colloid is used for the detection of rhodamine 6 G. Using the substrate, the lowest detection concentrations of rhodamine 6 G, crystal violet, enrofloxacin, melamine and leucomalachite green are 1.0×10~(-8), 6.1×10~(-8),1.4 × 10~(-6), 7.1 ×10~(-5) and 5.1 ×10~(-8) mol/L, respectively. Results demonstrate that the developed method has the advantage of convenience and high efficiency in the field preparation of reliable SERS substrate.  相似文献   

2.
Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L−1 for BPA and BPB and from 5 to 100 μg L−1 for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples.  相似文献   

3.
Surface-enhanced Raman scattering is a useful technique for detecting low levels of aromatic amines as environmental contaminants because it can be used to detect and distinguish among their isomers based on their distinctive SERS spectra. This paper demonstrates the feasibility of measuring the concentrations of aminobiphenyls (ABPs) including 4-ABP, 3-ABP, and 2-ABP down to the levels of about 5, 50, and 250 μg/mL, respectively. The SERS signal intensities of ABPs are dependent on the pH values of the samples and colloidal media. The optimal sample pH values were found to be 6.86, 7.83, and 7.36, for 2-ABP, 3-ABP, and 4-ABP, respectively, whereas the optimum silver colloidal pH ranges from 5.0 to 6.5. A detailed analysis of the different vibrational modes of aniline and the ABP isomers was carried out using computational modeling based on the density functional theory (DFT). Compared to aniline, the ABPs produced greater SERS enhancement of the intensities for the biphenyl ring-breathing mode. The SERS signal for the NH2 wagging band shows the order of enhancement as given by 4-ABP > 2-ABP > 3-ABP, which correlates well with the HOMO-LUMO energy gap based on the DFT modeling of the amines adsorbed on the silver cluster.  相似文献   

4.
Surface-enhanced Raman scattering (SERS) of 4,4′-azopyridine (AZPY) on silver foil substrate was measured under 1064 nm excitation lines. Density-functional theory (DFT) methods were used to calculate the structure and vibrational spectra of models such as Ag–AZPY, Ag4–AZPY and Ag6–AZPY complexes with B3LYP/6-31++G(d,p)(C,H,N)/Lanl2dz(Ag) basis set. The Raman bands of AZPY were identified on the ground of analog computation of potential energy distribution. The calculated spectra of Ag4–AZPY and Ag6–AZPY models were much approximated to the experimental results than that of Ag–AZPY model. The DFT results showed that the angles between two pyridyl rings keep 0° from AZPY to Ag–AZPY, Ag4–AZPY and Ag6–AZPY model. The energy gaps between the HOMO and LUMO changed from 363 to 1140 nm for AZPY-Ag complexes according to the DFT results. An conclusion was conceived that chemical enhancement mechanism may play an important role in the SERS of AZPY on silver substrate.  相似文献   

5.
张普  卫怡  蔡俊  陈艳霞  田中群 《催化学报》2016,(7):1156-1165
电化学 Stark效应是指电极溶液界面的吸附物或金属-吸附物之间的化学键的振动频率随电极电势而发生变化的现象.研究该效应,可以更好地理解吸附物与基底的相互作用(如吸附构型、吸附取向和覆盖度等随电位的变化),也可反过来推断电极基底的电子构型及其随电势的变化规律,对理解电化学双电层的结构以及电催化反应的构效关系都很有帮助.多年以来,电极表面吸附 CO的电化学 Stark效应广受关注,是由于 CO为很多小分子氧化的中间产物,研究 CO的谱学行为,可加深对 CO以及其它能产生 CO中间物有机小分子的电催化氧化机理和动力学的理解;另一方面, CO与过渡金属之间普遍存在s给电子以及p反馈电子作用,因此 CO也可作为探针分子,通过考察 COad以及 M–COad的振动频率的变化,可推断相应条件下基底的电子与几何结构等信息.
  本文使用电化学原位表面增强拉曼技术,在一个大的电势范围内考察了 Au@Pd纳米粒子薄膜电极上饱和吸附 CO的振动光谱行为,以期更好地理解 COad与基底的成键作用与电极电势之间的关系.由于纯 Pd电极表面的拉曼信号太弱,实验使用具有核壳结构的 Au@Pd纳米粒子薄膜作为模型电极,并利用 Au核的拉曼增强特性.宽广的电势范围约–1.5到0.55V vs. NHE,通过使用酸性、中性以及碱性电解质得以实现.实验考察的电势上限由 COad氧化起始电位决定,而下限由强烈氢析干扰测量所限制.结果表明,在检测的电势范围内, C–OM(M指在电极表面的桥式吸附CO和穴位吸附 CO所形成的谱带重叠)和 Pd–COM键的振动频率可以分为三段: dνC–OM/dE在–1.5~–1.2 V范围内是185~207 cm–1/V,在–1.2~–0.15 V是83~84 cm–1/V,在–0.2~0.55 V是43 cm–1/V;而 dνPd–COM/dE在–1.5~–1.2 V范围内是–10~–8 cm–1/V,在–1.2~–0.15 V是–31~–30 cm–1/V,在–0.2~0.55 V是–15 cm–1/V.与同时记录的极化曲线对比,认为在中性和碱性介质中所观察到 dνC–OM/dE在–1.2 V附近的急剧变化与电极表面发生了强烈的析氢反应有关.另外,结合密度泛函理论模型计算,认为共吸附的 H减少了 COad从桥式构型到穴位构型的转变,在酸性介质中这种变化不明显,可能是由于对应的电势较高,桥式吸附的 CO比例越大,桥式向穴位的转变本身相对较少.  相似文献   

6.
A novelmethod of fast and sensitive SERS detection using GMA-EDMA porous material combined with a miniature device was reported in this study. A 100 μL solution containing sample, silver colloid and NaCl was evenly mixed to ensure the sample molecules would adsorb onto silver nanoparticles. Then the mixture was added onto the porous material surface slowly, so that the aggregation of silver colloid would stay on the surface while the liquid components would flow away. This technology can improve the sensitivity of SERS detection. By this method, two pesticides tricyclazole and paraquat were successfully detected at concentrations of 5×10-3 mg/L and 1×10-3 mg/L, respectively.  相似文献   

7.
In this preliminary study, we evaluated four different types of substrate for the at-line coupling of capillary electrophoresis and surface-enhanced (resonance) Raman spectroscopy, CE-SER(R)S, with emphasis on spectral repeatability. We tested Sub1: etched silver foil, Sub2: a vapour-deposited silver film, Sub3: a silver oxalate-precoated silica TLC plate and Sub4: a silica TLC plate on which colloid and poly(l-lysine) were manually added to the analyte spots, used earlier in at-line CE-SE(R)RS. All substrates were first tested by manual spotting using trans-1,2-bis(4-pyridyl)ethylene (BPE) as a model compound for SERS and crystal violet (CV) as a model compound for SE(R)RS. The spectral features of the SE(R)RS spectra of BPE and CV showed a most satisfactory repeatability on all substrates. As expected, the signal intensities varied considerably between runs; this implies that quantification in at-line CE-SE(R)RS should rather be done by means of an on-line absorbance detector. In addition, the suitability of Sub1, Sub2 and Sub4 as deposition substrates after CE was explored using two cationic dyes: CV and basic fuchsin (BF). Good-quality SERRS spectra could be recorded on all three substrates. Although Sub1 and Sub2 have a poor water-sorptivity, they were found to be good substrates for at-line CE-SERRS. They do not require any post-deposition addition of silver colloid and could therefore become attractive alternatives for Sub4.  相似文献   

8.
Primary aromatic amines(PAAs) are substances with toxicity and suspected human carcinogenicity. A facile method for highly sensitive detection of PAAs using surface-enhanced Raman spectroscopy(SERS)is reported. The immobilization of Au nanoparticles(AuNPs) on the glycidyl methacrylate–ethylene dimethacrylate(GMA-EDMA) materials makes the substrate a closely packed but not aggregated AuNP arrays which provides a prominent SERS enhancement. Four PAAs with different substituent groups,namely, p-toluidine, p-nitroaniline, benzidine and 4,4-methylene-bis-(2-chloroaniline) have been successfully identified and quantified. High sensitivity and good linear relationship between SERS signals and concentrations of PAAs are obtained for all four PAAs.  相似文献   

9.
The study aimed to distinguish genomic DNAs from nine species of plants belonging to six families and analyze their genetic relationship by using surface-enhanced Raman scattering (SERS). The silver nano-colloid and excitation wavelength of 785 nm used in this study yielded excellent quality of the SERS spectra. Raman signals were remarkably enhanced. Although the spectra for the nine species of plants appeared very similar, there were significant differences according to the analysis of variance analysis. There were three strong characteristic peaks. The peak at 625 cm−1 was due to the vibration overlap of C3′-endo/anti deoxyribose, cytosine, and guanine; the one at 715 cm−1 was due to the scissoring vibrations of C2N1C6 of adenine; and that at 1011 cm−1 was due to the stretching vibration of the CO bond of deoxyribose and vibrations of cytosine. The SERS data were smoothed and standardized and evaluated using second derivative analysis, principal component analysis, and hierarchical cluster analysis. A model was established using the data from hierarchical cluster analysis and principal components of the second derivative. The clustering result of this model was highly consistent with the traditional classification of plants; all plant species investigated were correctly clustered into classes according to the cluster distance coefficient among them; the accuracy of clustering was 100%. Chinese cabbage (Brassica pekinensis Rupr.) and green cabbage (Brassica chinensis L.) belonging to Cruciferae, maize (Zea mays L.) and bamboo (Sinocalamus affinis McClure) belonging to Gramineae, and magnolia (Magnolia delavayi Franch.) and champaca (Michelia alba DC.) belonging to Magnoliaceae were clustered into three separate classes, and fern (Nephrolepis auriculata L., Nephrolepidaceae), garlic (Allium sativum L., Amaryllidaceae), and ginkgo (Ginkgo biloba L., Ginkgoaceae) were each clustered into separate classes. These findings suggest that the SERS spectra of plant genomic DNAs can be used to classify species and analyze their genetic relationship. It is an effective and perfect supplement to traditional classification and can form the basis for genetic analysis.  相似文献   

10.
Wu ZS  Zhou GZ  Jiang JH  Shen GL  Yu RQ 《Talanta》2006,70(3):533-539
It is difficult to detect glucose by surface-enhanced Raman spectroscopy (SERS) due to the small normal Raman cross-section and the weak adsorption of glucose molecules on the surface of noble metal. A simple and fast method is proposed in this paper for the detection of glucose based on SERS signal of the enzyme reaction product and the difficulties have been circumvented. Gold colloids modified by horseradish peroxidase and glucose oxidase (HRP/GOD-gold colloids) are added to the mixture of o-phenylenediamine and glucose, and the resulting solution is allowed to react at room temperature for 5 min. Azoaniline, an azo compound with strong Raman scattering, is generated and the Raman scattering of this reaction product is enhanced when adsorbed on gold colloids. The intensity of the SERS spectrum is used for assessment of glucose content. The dynamic signal range provided by this analytical system is 0.50-32 mM, which covers the normal clinical range for glucose in blood from 3.5 to 6.1 mM. The detection limit is about 0.46 mM. The interference effect of several proteins on glucose detection is also investigated and has shown to have no effect on the measurement of glucose by the described technique.  相似文献   

11.
In this work, silver nanoparticles (AgNPs) decorated magnetic microspheres (MMs) are prepared as surface-enhanced Raman scattering (SERS) substrate for the analysis of adenine in aqueous solutions. To prepare these substrates, magnetic particles were first synthesized by coprecipitation of Fe(II) and Fe(III) with ammonium hydroxide. A thin layer of cross-linked polymer was formed on these magnetic particles by polymerization through suspension of magnetic particles into a solution of divinyl benzene/methyl methacrylate. The resulted polymer protected magnetic particles are round in shape with a size of 80 μm in diameter. To form AgNPs on these MMs, photochemical reduction method was employed and the factors in photochemical reduction method were studied and optimized for the preparation of highly sensitive and stable AgNPs on MMs substrates (abbreviated as AgMMs substrates). By dispersing the AgMMs in aqueous samples, cylindrical magnet was used to attract the AgMMs for SERS detections. The observed enhancement factor of AgMMs reached 7 orders in magnitude for detection of adenine with a detection limit approaching to few hundreds of nanomolar.  相似文献   

12.
13.
The antimalarial agent mefloquine was investigated using Fourier transform near-infrared (FT NIR) Raman and FT IR spectroscopy. The IR and Raman spectra were calculated with the help of density functional theory (DFT) and a very good agreement with the experimental spectra was achieved. These DFT calculations were applied to unambiguously assign the prominent features in the experimental vibrational spectra. The calculation of the potential energy distribution (PED) and the atomic displacements provide further valuable insight into the molecular vibrations. The most prominent NIR Raman bands at 1,363 cm−1 and 1,434 cm−1 are due to C=C stretching (in the quinoline part of mefloquine) and CH2 wagging vibrations, while the most intense IR peaks at 1,314 cm−1; 1,147 cm−1; and 1,109 cm−1 mainly consist of ring breathings and δCH (quinoline); C–F stretchings; and asymmetric ring breathings, C–O stretching as well as CH2 twisting/rockings located at the piperidine moiety. Since the active agent (mefloquine) is usually present in very low concentrations within the biological samples, UV resonance Raman spectra of physiological solutions of mefloquine were recorded. By employing the detailed non-resonant mode assignment it was also possible to unambiguously identify the resonantly enhanced modes at 1,619 cm−1, 1,603 cm−1 and 1,586 cm−1 in the UV Raman spectra as high symmetric C=C stretching vibrations in the quinoline part of mefloquine. These spectroscopic results are important for the interpretation of upcoming in vitro and in vivo mefloquine target interaction experiments.  相似文献   

14.
Density functional theory (DFT) was used to identify and assign the Raman spectra of fenamidone, and a simple and rapid surface-enhanced Raman spectroscopy (SERS)detection method for fenamidone was established. Gold nanoparticles (AuNPs)were synthesized via an improved reduction method of chloroauric acid with the trisodium citrate. DFT was used to optimize the geometric configuration of fenamidone, so as to identify and assign the vibration modes of SERS spectra. The simulated spectra were compared to that of the standard solution as well as the tobacco matrix spiked solution.The SERS detection limit of fenamidone was 0.01 mg/kg in the standard solution and 0.02 mg/kg in tobacco matrix spiked solution. In the range of 0.1-5 mg/L, there was a good linear response between SERS intensity and the logarithm of fenamidone concentrations, with the correlation coefficient (R2) of 0.9658. The relative standard deviations (RSDs)were less than 2.6%. This method is suitable for the determination of fenamidone residues in tobacco samples. © 2023 the authors.  相似文献   

15.
In the present study, Doxorubicin (DOX) drug in healthy blood plasma was the focus of the investigation by surface-enhanced Raman scattering (SERS). In recent years, chemotherapy has been the most popular treatment for various types of cancer; however, its adverse side effects on the patient's health have made a negative aspect regarding the use of this technique. DOX is the most common chemotherapy drug and is used for the treatment of an extensive range of human malignancies. The surface-enhanced Raman scattering (SERS) is a precise technique for the detection of chemicals and biomaterials with significantly low concentrations. The glass fiber substrates coated with silver nanoparticles (AgNPs) have been used to detect DOX. First, the Tollens' method was applied to prepare the AgNPs, and the characteristics of fabricated AgNPs were evaluated using ultraviolet–visible spectroscopy (UV–Vis) and X-ray diffraction (XRD). Then, AgNPs were coated on the glass fiber substrate by a chemical method. Finally, the enhancement of the Raman signal resulted from the molecular vibrations of DOX was evaluated using these SERS-active substrates as plasmonic and Raman spectroscopy sensors. Afterward, for making the sensors practical, the DOX in blood plasma were deposited on the fabricated sensors, and the Raman vibrations were evaluated. The SERS-active substrates, AgNPs deposited on glass fiber substrates, were fabricated for the detection of DOX in and out of the blood plasma; the limit of detection (LOD) for both was 10?10 M, and the mean relative standard deviation at concentrations of 10?10 M of DOX out of blood plasma, and 10?10 M of DOX in blood plasma were obtained to be 3.76% and 3.61%, respectively for ten repeated measurements in which the AgNPs were SERS-active substrates of the biosensors for detecting the DOX. In addition, the enhancement factor was calculated both experimentally and via finite-difference time-domain (FDTD) simulation, which was 29.76 × 103 and 24.95 × 103, respectively. Therefore, these SERS-active substrates can be used to develop microsensors and show positive results for SERS-based investigations.  相似文献   

16.
Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 1010 or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm−1 in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1–2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.  相似文献   

18.
Biologically derived materials provide a rich variety of approaches toward new functional materials because of their fascinating structures and environment-friendly features, which is currently a topic of research interest. In this paper, we show that the cuttlebone-derived organic matrix (CDOM) is an excellent scaffold for the one-step synthesis and assembly of silver nanoparticles (AgNPs), which can be further used as substrate for surface-enhanced Raman scattering (SERS). Formation of AgNPs–CDOM composite was accomplished by the reaction of CDOM with AgNO3 and NH3·H2O solution at 80 °C without using any other stabilizer and reducing agents. UV–vis spectra and TEM were utilized to characterize the AgNPs and investigate their formation process. Results demonstrate that the size and distribution of AgNPs can be partly regulated by changing incubation time; the concentration of NH3·H2O is critical to the formation rate of AgNPs. As a proof of principle, we show that the AgNPs–CDOM composite can be employed in trace analysis using SERS.  相似文献   

19.
以银纳米线为拉曼基底,运用表面增强拉曼光谱技术(SERS)建立了对发热剂中正壬酸香草酰胺的检测方法。采用简便有效的两步滴加多元醇法制备了具有SERS活性的银纳米线,利用扫描电镜和紫外-可见光谱仪对银纳米线进行了表征。对正壬酸香草酰胺进行了SERS研究并对正壬酸香草酰胺的SERS谱带进行了归属。正壬酸香草酰胺的质量浓度在1~1.0×10-8mg/L范围内与其在1588 cm-1处的SERS特征峰强度有良好的线性关系,方法的最低检出浓度可达0.66 pg/L。对样品进行前处理后,运用加标回收法考察其回收率。该方法可以用于发热剂中正壬酸香草酰胺的检测。  相似文献   

20.
用密度泛函理论研究了氧原子与氟代甲基自由基的反应.反应中出现的所有物种的平衡构型用B3LYP方法在6-311++G(2d, 2p)基组水平上进行了优化,同时对各物种进行了频率分析;在同一理论水平上计算了各反应通道的势能面变化,分析了反应物、中间体、过渡态、产物的振动模式随反应途径的变化关系,阐明了该多通道反应的反应机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号