首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(8):910-919
Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu4N+)2[MIII(HFl−O)(Pc.3−)].−(Br) ⋅ 1.5 C6H4Cl2 [M=Al ( 1 ), Ga ( 2 ); HFl−O=fluoren‐9‐olato anion; Pc=phthalocyanine] and (Bu4N+) [InIIIBr(Pc.3−)].− ⋅ 0.875 C6H4Cl2 ⋅ 0.125 C6H14 ( 3 ). The salts were found to contain Pc.3− radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc.3− in the near‐IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl−O anions in 1 and 2 with short Al−O and Ga−O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C−O bonds [1.402(3) and 1.391(11) Å in 1 and 2 , respectively] in the HFl−O anions are longer than the same bond in the fluorenone ketyl (1.27–1.31 Å). Salts 1 – 3 show effective magnetic moments of 1.72, 1.66, and 1.79 μB at 300 K, respectively, owing to the presence of unpaired S= 1/2 spins on Pc.3−. These spins are coupled antiferromagnetically with Weiss temperatures of −22, −14, and −30 K for 1 – 3 , respectively. Coupling can occur in the corrugated two‐dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J /k B=−0.9 and −1.1 K, respectively, and in the π‐stacking {[InIIIBr(Pc.3−)].−}2 dimers of 3 with an exchange interaction of J /k B=−10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc.3−. It was found that increasing the size of the central metal atom strongly broadened these EPR signals.  相似文献   

2.
Cavity ring‐down (CRD) techniques were used to study the kinetics of the reaction of Br atoms with ozone in 1–205 Torr of either N2 or O2, diluent at 298 K. By monitoring the rate of formation of BrO radicals, a value of k(Br + O3) = (1.2 ± 0.1) × 10−12 cm3 molecule−1 s−1 was established that was independent of the nature and pressure of diluent gas. The rate of relaxation of vibrationally excited BrO radicals by collisions with N2 and O2 was measured; k(BrO(v) + O2 → BrO(v − 1) + O2) = (5.7 ± 0.3) × 10−13 and k(BrO(v) + N2 → BrO(v − 1) + N2) = (1.5 ± 0.2) × 10−13 cm3 molecule−1 s−1. The increased efficiency of O2 compared with N2 as a relaxing agent for vibrationally excited BrO radicals is ascribed to the formation of a transient BrO–O2 complex. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 125–130, 2000  相似文献   

3.
We investigate anionic [Co,CO2,nH2O] clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250–2234 cm−1 using an FT-ICR mass spectrometer. We show that both CO2 and H2O are activated in a significant fraction of the [Co,CO2,H2O] clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C−O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C−O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2. However, calculations find Co(HCOO)(OH) as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590–1730 cm−1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH). Upon additional hydration, all species [Co,CO2,nH2O], n≥2, undergo IRMPD through loss of H2O molecules as a relatively weakly bound messenger. The main spectral features are the C−O stretching mode of the CO ligand around 1900 cm−1, the water bending mode mixed with the antisymmetric C−O stretching mode of the HCOO ligand around 1580–1730 cm−1, and the symmetric C−O stretching mode of the HCOO ligand around 1300 cm−1. A weak feature above 2000 cm−1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.  相似文献   

4.
The thermometric titration of titanium(III) chloride with oxalic acid was carried out at 25°C. The molar ratio of titanium (III): oxalate was found to be 1:2, which indicates the formation of Ti(C2O4)2 ion in acid media. The limiting value of the heat of reaction between Ti(III) ion and oxalic acid in hydrochloric acid solution was found to be −1.5 Kcal mole−1 at 25°C.  相似文献   

5.
The reaction of (diaqua)(N,N′‐ethylene‐bis(salicylidiniminato)manganese(III) with aqueous sulphite buffer results in the formation of the corresponding mono sulphito complex, [Mn(Salen)(SO3)] (S‐bonded isomer) via three distinct paths: (i) Mn(Salen)(OH2)2+ + HSO3 → (k1); (ii) Mn(Salen)(OH2)2+ + SO32− → (k2); (III) Mn(Salen)(OH2)(OH) + SO32− → (k3) in the stopped flow time scale. The fact that the mono sulphito complex does not undergo further anation with SO32−/HSO3 may be attributed to the strong trans‐activating influence of the S‐bonded sulphite. The values of the rate constants (10−2ki/dm2 mol−1 s−1 at 25°C, I = 0.3 mol dm−3), ΔHi#/kJ mol−1 and ΔSi#/J K−1 mol−1 respectively are: 2.97 ± 0.27, 42.4 ± 0.2, −55.3 ± 0.6 (i = 1); 11.0 ± 0.8, 33 ± 3, −75 ± 10 (i = 2); 20.6 ± 1.9, 32.4 ± 0.2, −72.9 ± 0.6 (i = 3). The trend in reactivity (k2 > k1), a small labilizing effect of the coordinated hydroxo group (k3/k2 < 2), and substantially low values of ΔS# suggest that the mechanism of aqua ligand substitution of the diaqua, and aqua‐hydroxo complexes is most likely associative interchange (Ia). No evidence for the formation of the O‐bonded sulphito complex and the ligand isomerization in the sulphito complex, (MnIII‐OSO2 → MnIII‐SO3), ensures the selectivity of the MnIII centre toward the S‐end of the SIV species. The monosulphito complex further undergoes slow redox reaction in the presence of excess sulphite to produce MnII, S2O62− and SO42−. The formation of dithionate is a consequence of the fast dimerization of the SO3−. generated in the rate determining step and also SO42− formation is attributed to the fast scavenging of the SO3−. by the MnIII species via a redox path. The internal reduction of the MnIII centre in the monosulphito complex is insignificant. The redox reaction of the monosulphitomanganese(III) complex operates via two major paths, one involving HSO3− and the other SO32−. The electron transfer is believed to be outersphere type. The substantially negative values of activation entropies (ΔS# = −(1.3 ± 0.2) × 102 and −(1.6 ± 0.2) × 102 J K−1 mol−1 for the paths involving HSO3− and SO32− respectively) reflect a considerable degree of ordering of the reactants in the act of electron transfer. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 627–635, 1999  相似文献   

6.
The data on temperature, solvent, and high hydrostatic pressure influence on the rate of the ene reactions of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione ( 1 ) with 2‐carene ( 2 ), and β‐pinene ( 4 ) have been obtained. Ene reactions 1 + 2 and 1 + 4 have high heat effects: ∆Hrn ( 1 + 2 ) −158.4, ∆Hrn( 1 + 4 ) −159.2 kJ mol−1, 25°C, 1,2‐dichloroethane. The comparison of the activation volume (∆V( 1 + 2 ) −29.9 cm3 mol−1, toluene; ∆V( 1 + 4 ) −36.0 cm3 mol−1, ethyl acetate) and reaction volume values (∆Vr‐n( 1 + 2 ) −24.0 cm3 mol−1, toluene; ∆Vr‐n( 1 + 4 ) −30.4 cm3 mol−1, ethyl acetate) reveals more compact cyclic transition states in comparison with the acyclic reaction products 3 and 5 . In the series of nine solvents, the reaction rate of 1+2 increases 260‐fold and 1+4 increases 200‐fold, respectively, but not due to the solvent polarity.  相似文献   

7.
2‐Phenylethanol, racemic 1‐phenyl‐2‐propanol, and 2‐methyl‐1‐phenyl‐2‐propanol have been pyrolyzed in a static system over the temperature range 449.3–490.6°C and pressure range 65–198 torr. The decomposition reactions of these alcohols in seasoned vessels are homogeneous, unimolecular, and follow a first‐order rate law. The Arrhenius equations for the overall decomposition and partial rates of products formation were found as follows: for 2‐phenylethanol, overall rate log k1(s−1)=12.43−228.1 kJ mol−1 (2.303 RT)−1, toluene formation log k1(s−1)=12.97−249.2 kJ mol−1 (2.303 RT)−1, styrene formation log k1(s−1)=12.40−229.2 kJ mol−1(2.303 RT)−1, ethylbenzene formation log k1(s−1)=12.96−253.2 kJ mol−1(2.303 RT)−1; for 1‐phenyl‐2‐propanol, overall rate log k1(s−1)=13.03−233.5 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=13.04−240.1 kJ mol−1(2.303 RT)−1, unsaturated hydrocarbons+indene formation log k1(s−1)=12.19−224.3 kJ mol−1(2.303 RT)−1; for 2‐methyl‐1‐phenyl‐2‐propanol, overall rate log k1(s−1)=12.68−222.1 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=12.65−222.9 kJ mol−1(2.303 RT)−1, phenylpropenes formation log k1(s−1)=12.27−226.2 kJ mol−1(2.303 RT)−1. The overall decomposition rates of the 2‐hydroxyalkylbenzenes show a small but significant increase from primary to tertiary alcohol reactant. Two competitive eliminations are shown by each of the substrates: the dehydration process tends to decrease in relative importance from the primary to the tertiary alcohol substrate, while toluene formation increases. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 401–407, 1999  相似文献   

8.
王蕊林海  林华宽 《中国化学》2007,25(11):1646-1651
Two long-chain multidentate ligands: 2,9-di-(n-2',5',8'-triazanonyl)-1,10-phenanthroline (L^1) and 2,9-di- (n-4',7',10'-triazaundecyl)-1,10-phenanthroline (L^2) were synthesized. The hydrolytic kinetics of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) catalyzed by the complexes of L^1 or L^2 with La(Ⅲ) or Gd(Ⅲ) have been studied in aqueous solution at (298.2±0.1) K, I=0.10 mol·dm^-3 KNO3 in pH 7.5-9.1, respectively, finding that the catalytic effect of GdL^1 was the best among the four complexes for hydrolysis of HPNP. Its kLnLH-1, kLnLand pKa are 0.047 mol^-1·L·s^-1, 0.000074 mol^-1·L·s^-1 and 8.90, respectively. This paper expounded the studied result with the structure of the ligands and the properties of the metal ions, and deduced the catalysis mechanism.  相似文献   

9.
Uranium and thorium hydrides are known as functional groups for ligand stabilized complexes and as isolated molecules under matrix isolation conditions. Here, the new molecular products of the reactions of laser-ablated U and Th atoms with HCl and with HBr, namely HUCl, HUBr and HThCl, HThBr, based on their mid and far infrared spectra in solid argon, are reported. The assignment of these species is based on the close agreement between observed and calculated vibrational frequencies. The H−U and U−35Cl stretching modes of HUCl were observed at 1404.6 and 323.8 cm−1, respectively. Using DCl instead to form DUCl gives absorption bands at 1003.1 and 314.7 cm−1. The corresponding bands of HThCl are 1483.8 (H−Th) and 1058.0 (D −Th), as well as 340.3 and 335.8 cm−1 (Th−35Cl), respectively. HUBr is observed at 1410.6 cm−1 and the BP86 computed shift from HUCl is 6.2 cm−1 in excellent agreement. The U−H stretching frequency increases from 1383.1 (HUF), 1404.6 (HUCl), 1410.6 (HUBr) to 1423.6 cm−1 (UH) as less electronic charge is removed from the U−H bond by the less electronegative substituent. These U−H stretching frequencies follow the Mayer bond orders calculated for the three HUX molecules. A similar trend is found for the Th counterparts. Additional absorptions are assigned to the H2AnX2 molecules (An=U, Th, X=Cl, Br) formed by the exothermic reaction of a second HX molecule with the above primary products.  相似文献   

10.
A new unsymmetrical Schiff base zwitterion (Ⅲ) was synthesized using L-lysine, salicylaldehyde and 2-hydroxy-l-naphthaldehyde. Samarium(Ⅲ) complex of this ligand [SmL(NO3)]NO3·2H2O has been prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as dα/dt=3/2Ae^E/RT(1-α)^2/3[1-(1 -α)^1/3)]^-1. The kinetic parameters (E, A), activation entropy △S^x and activation free-energy △G^x were also gained.  相似文献   

11.
The current library of amidinate ligands has been extended by the synthesis of two novel dimethylamino-substituted alkynylamidinate anions of the composition [Me2N−CH2−C≡C−C(NR)2] (R = iPr, cyclohexyl (Cy)). The unsolvated lithium derivatives Li[Me2N−CH2−C≡C−C(NR)2] ( 1 : R = iPr, 2 : R = Cy) were obtained in good yields by treatment of in situ-prepared Me2N−CH2−C≡C−Li with the respective carbodiimides, R−N=C=N−R. Recrystallization of 1 and 2 from THF afforded the crystalline THF adducts Li[Me2N−CH2−C≡C−C(NR)2] ⋅ nTHF ( 1 a : R = iPr, n=1; 2 a : R = Cy, n=1.5). Precursor 2 was subsequently used to study initial complexation reactions with selected di- and trivalent transition metals. The dark red homoleptic vanadium(III) tris(alkynylamidinate) complex V[Me2N−CH2−C≡C−C(NCy)2]3 ( 3 ) was prepared by reaction of VCl3(THF)3 with 3 equiv. of 2 (75 % yield). A salt-metathesis reaction of 2 with anhydrous FeCl2 in a molar ratio of 2 : 1 afforded the dinuclear homoleptic iron(II) alkynylamidinate complex Fe2[Me2N−CH2−C≡C−C(NCy)2]4 ( 4 ) in 69 % isolated yield. Similarly, treatment of Mo2(OAc)4 with 3 or 4 equiv. of 2 provided the dinuclear, heteroleptic molybdenum(II) amidinate complex Mo2(OAc)[Me2N−CH2−C≡C−C(NCy)2]3 ( 5 ; yellow crystals, 50 % isolated yield). The cyclohexyl-substituted title compounds 2 a , 4 , and 5 were structurally characterized through single-crystal X-ray diffraction studies.  相似文献   

12.
The photophysical and photochemical properties of (OC‐6‐33)‐(2,2′‐bipyridine‐κN1,κN1′)tricarbonyl(9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylato‐κO)rhenium (fac‐[ReI(aq‐2‐CO2)(2,2′‐bipy)(CO)3]) were investigated and compared to those of the free ligand 9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylate (=anthraquinone‐2‐carboxylate) and other carboxylato complexes containing the (2,2′‐bipyridine)tricarbonylrhenium ([Re(2,2′‐bipy)(CO)3]) moiety. Flash and steady‐state irradiations of the anthraquinone‐derived ligand (λexc 337 or 351 nm) and of its complex reveal that the photophysics of the latter is dominated by processes initiated in the Re‐to‐(2,2′‐bipyridine) charge‐transfer excited state and 2,2′‐bipyridine‐ and (anthraquinone‐2‐carboxylato)‐centered intraligand excited states. In the reductive quenching by N,N‐diethylethanamine (TEA) or 2,2′,2″‐nitrilotris[ethanol] TEOA, the reactive states are the 2,2′‐bipyridine‐centered and/or the charge‐transfer excited states. The species with a reduced anthraquinone moiety is formed by the following intramolecular electron transfer, after the redox quenching of the excited state: [ReI(aq−2−CO2)(2,2′‐bipy.)(CO)3]⇌[ReI(aq−2−CO2.)(2,2′‐bipy)(CO)3] The photophysics, particularly the absence of a ReI‐to‐anthraquinone charge‐transfer excited state photochemistry, is discussed in terms of the electrochemical and photochemical results.  相似文献   

13.
trans-3-Methyl-4-(p-anisyl)-1,2-dioxetane 1, trans-3-methyl-4-(o-anisyl)-1,2-dioxetane 2 , 3-methyl-3-benzyl-1,2-dioxetane 3 , and 3-methyl-3-p-methoxybenzyl-1,2-dioxetane 4 were synthesized in low yield by the β-bromo hydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔG≠ = 22.8 ± 0.3 kcal/mol, Δ≠ = 22.2, ΔS≠ = −1.7 e.u., k60 = 7.6 × 10−3s−1; for 2 ΔG≠ + 23.6 ± 0.3 kcal/mol, ΔH≠ = 22.8, ΔS≠ = −2.2 e.u., k60 = 2.5 × 10−3S−1; for 3 ΔG≠ = 24.0 ± 0.4 kcal/mol, ΔH≠ = 23.1, ΔS≠ = −2.7 e.u., k60 = 1.2 × 10−3S−1; for 4 ΔG≠ = 24.0 ± 0.2 kcal/mol, ΔH≠, = 23.2, ΔS≠, = −2.4 e.u., k60 = 1.2 × 10−3s−1). Thermolysis of 1–4 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) [chemiexcitation yields ϕT, ϕS, respectively: for 1 0.02, 0.0001; for 2 0.02, 0.0001; for 3 0.03, 0.0002; for 4 0.02, 0.0001]. The effect of paramethoxyaryl substitution was consistent with electronic effects. The ortho substitution in 2 resulted in an increase in stability of the dioxetane, opposite that observed for an electronic effect. The results are discussed in relation to a diradical-like mechanism.  相似文献   

14.
We report an oxygen vacancy (Vo)-rich metallic MoO2−x nano-sea-urchin with partially occupied band, which exhibits super CO2 (even directly from the air) photoreduction performance under UV, visible and near-infrared (NIR) light illumination. The Vo-rich MoO2−x nano-sea-urchin displays a CH4 evolution rate of 12.2 and 5.8 μmol gcatalyst−1 h−1 under full spectrum and NIR light illumination in concentrated CO2, which is ca. 7- and 10-fold higher than the Vo-poor MoO2−x, respectively. More interestingly, the as-developed Vo-rich MoO2−x nano-sea-urchin can even reduce CO2 directly from the air with a CO evolution rate of 6.5 μmol gcatalyst−1 h−1 under NIR light illumination. Experiments together with theoretical calculations demonstrate that the oxygen vacancy in MoO2−x can facilitate CO2 adsorption/activation to generate *COOH as well as the subsequent protonation of *CO towards the formation of CH4 because of the formation of a highly stable Mo−C−O−Mo intermediate.  相似文献   

15.
The kinetics and mechanism for the thermal decomposition of diketene have been studied in the temperature range 510–603 K using highly diluted mixtures with Ar as a diluent. The concentrations of diketene, ketene, and CO2 were measured by FTIR spectrometry using calibrated standard mixtures. Two reaction channels were identified. The rate constants for the formation of ketene (k1) and CO2 (k2) have been determined and compared with the values predicted by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory for the branching reaction. The first-order rate constants, k1 (s−1) = 1015.74 ± 0.72 exp(−49.29 (kcal mol−1) (±1.84)/RT) and k2 (s−1) = 1014.65 ± 0.87 exp(−49.01 (kcal mol−1) (±2.22)/RT); the bulk of experimental data agree well with predicted results. The heats of formation of ketene, diketene, cyclobuta-1,3-dione, and cyclobuta-1,2-dione at 298 K computed from the G2M scheme are −11.1, −45.3, −43.6, and −40.3 kcal mol−1, respectively. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 580–590, 2007  相似文献   

16.
The two molecular triads 1a and 1b consisting of a porphyrin (P) covalently linked to a fullerene (C60) electron acceptor and tetrathiafulvalene (TTF) electron‐donor moiety were synthesized, and their photochemical properties were determined by transient absorption and emission techniques. Excitation of the free‐base‐porphyrin moiety of the TTF−P2 H−C60 triad 1a in tetrahydro‐2‐methylfuran solution yields the porphyrin first excited singlet state TTF−1P2 H−C60, which undergoes photoinduced electron transfer with a time constant of 25 ps to give TTF−P2 H.+−C60.−. This intermediate charge‐separated state has a lifetime of 230 ps, decaying mainly by a charge‐shift reaction to yield a final state, TTF.+−P2 H−C60.−. The final state has a lifetime of 660 ns, is formed with an overall yield of 92%, and preserves ca. 1.0 eV of the 1.9 eV inherent in the porphyrin excited state. Similar behavior is observed for the zinc analog 1b . The TTF‐PZn.+−C60.− state is formed by ultrafast electron transfer from the porphyrinatozinc excited singlet state with a time constant of 1.5 ps. The final TTF.+−PZn−C60.− state is generated with a yield of 16%, and also has a lifetime of 660 ns. Although charge recombination to yield a triplet has been observed in related donor‐acceptor systems, the TTF.+−P−C60.− states recombine to the ground state, because the molecule lacks low‐energy triplet states. This structural feature leads to a longer lifetime for the final charge‐separated state, during which the stored energy could be harvested for solar‐energy conversion or molecular optoelectronic applications.  相似文献   

17.
3‐Methyl‐3‐(3‐pentyl)‐1,2‐dioxetane 1 and 3‐methyl‐3‐(2,2‐dimethyl‐1‐propyl)‐1,2‐dioxetane 2 were synthesized in low yield by the α‐bromohydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔH‡ = 25.0 ± 0.3 kcal/mol, ΔS‡ = −1.0 entropy unit (e.u.), ΔG‡ = 25.3 kcal/mol, k1 (60°C) = 4.6 × 10−4s−1; for 2 ΔH‡ = 24.2 ± 0.2 kcal/mol, ΔS‡ = −2.0 e.u., ΔG‡ = 24.9 kcal/mol, k1 (60°C) = 9.2 × 10−4s−1. Thermolysis of 1–2 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) (chemiexcitation yields for 1: ϕT = 0.02, ϕS ≤ 0.0005; for 2: ϕT = 0.02, ϕS ≤ 0.0004). The results are discussed in relation to a diradical‐like mechanism. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:176–179, 2001  相似文献   

18.
Relative rate coefficients for the reaction of acetyl (CH3CO) radicals with O2 (k4) and Cl2 (k7) have been obtained at 298 K and 228 K as a function of total pressure, using FTIR/environmental chamber techniques. Measured values of k4/k7 were placed on an absolute basis using k7=2.8×10−11 exp(−47/T) cm3 molec−1 s−1. At 298 K, the value of k4 is constant ((7±2)×10−13 cm3 molec−1 s−1) at pressures from 0.1 to 2 torr, then increases to a high pressure limiting value of (3.2±0.6)×10−12 cm3 molec−1 s−1, which is approached at pressures above 300 torr. At 228 K, the low-pressure value of k4 increases by about 20–30%, while the high pressure value remains unchanged. Experiments designed to elucidate the products of reaction (4) as a function of pressure at 298 K indicate that the reaction occurs via a concerted mechanism in which CH3CO radicals combine with O2 to give an excited acetylperoxy radical (CH3COO2*) which is increasingly stabilized at high pressure at the expense of a low pressure decomposition channel. The yield of acetylperoxy radicals from reaction (4) decreases from >95% at pressures above 100 torr, to about 90% at 60 torr, and 50% at 6 torr. Indirect evidence for formation of OH radicals from the low pressure decomposition is presented, although the carbon-containing coproduct(s) of this channel could not be identified. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 655–663, 1997.  相似文献   

19.
X‐ray diffraction analysis of single crystals of three new arsenates adopting apatite‐type structures yielded formula Sr5(AsO4)3F for strontium arsenate fluoride, (I), (Sr1.66Ba0.34)(Ba2.61Sr0.39)(AsO4)3Cl for strontium barium arsenate chloride, (II), and Cd5(AsO4)3Cl0.58(OH)0.42 for cadmium arsenate hydroxide chloride, (III). All three structures are built up of isolated slightly distorted AsO4 tetrahedra that are bridged by Sr2+ in (I), by Sr2+/Ba2+ in (II) and by Cd2+ in (III). Compounds (I) and (II) represent typical fluorapatites and chlorapatites, respectively, with F at the 2a (0, 0, ) site and Cl at the 2b (0, 0, 0) site of P63/m. In contrast, in (III), due to the requirement that the smaller Cd2+ cation is positioned closer to the channel Cl anion (partially substituted by OH), the anion occupies the unusual 2a (0, 0, ) site. Therefore, Cl is similar to F in (I), coordinated by three A2 cations, unlike the octahedrally coordinated Cl in (II) and other ordinary chlorapatites. Furthermore, in (III), using FT–IR studies, we have inferred the existence of H+ outside the channel in oxyhydroxyapatites and provided possible atomic coordinates for a H atom in HAsO42−, leading to a proposed formulation of the compound as Cd5(AsO4)3−x(HAsO4)xCl0.58(OH)0.42−x−(y/2)Ox+(y/2)y/2.  相似文献   

20.
《Polyhedron》1987,6(1):53-60
Interactions in aqueous solution of caffeate with copper(II), zinc(II), iron(II) and iron(III) have been investigated. Virtually instantaneous and complete reduction of iron(III) was observed. Glass electrode potentiometry was used to determine the speciation and corresponding formation constants of caffeate with each of the other three metal ions named. Conditions were: temperature, 25°C; ionic strength, 0.100 mol dm−3 with respect to chloride. Values obtained for the logarithms of the stepwise protonation constants of the singly protonated dianion of caffeate (L2−) are 8.72 and 4.41. The titration data carried out in the presence of the three metal(II) ions can be explained by postulating the major complexes: LCu, logβ110=6.02; LCuH1, logβ11-1=0.25; L3Cu2H−3−5, logβ32-3=0.97; LZnH−1, logβ11-1 = −3.03; L3ZnH−26−, logβ31-2 = −5.51; LFe, logβ110 = 3.86; LFeH−1, logβ11-1 = −3.83; L3FeH−26−, logβ31-2 = −6.14, together with a variety of minor species. Complexation in the major species involves, predominantly, chelation by the catecholic site of caffeate whereas coordination to the carboxylate group together with catechol-type chelation featured amongst the minor species. The tendency of copper(II) to form oligonuclear complexes is evident. A single dinuclear iron(II) complex was also found amongst the minor species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号