首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supramolecular systems consisting of covalent organic frameworks (COFs) and Ni complex are designed for robust photocatalytic reduction of CO2. Multiple heteroatom-hydrogen bonding between the COF and Ni complex is identified to play a decisive role in the photoexcited electron transfer across the liquid-solid interface. The diminution of steric groups on COF or metal complex can optimize catalytic performance, which is more attributable to the enhanced hydrogen-bond interaction rather than their intrinsic activity. The photosystem with relatively strong strength of hydrogen bonds exhibits remarkable photocatalytic CO2-to-CO conversion, far superior to photosystems with supported atomic Ni or metal complex alone in the absence of hydrogen-bond effect. Such heteroatom-hydrogen bonds bridging electron transport pathway confers supramolecular system with high photocatalytic performance, providing an avenue to rationally design efficient and steadily available photosystems.  相似文献   

2.
The development of covalent organic frameworks (COFs) with efficient charge transport is of immense interest for applications in optoelectronic devices. To enhance COF charge transport properties, electroactive building blocks and dopants can be used to induce extended conduction channels. However, understanding their intricate interplay remains challenging. We designed and synthesized a tailor-made COF structure with electroactive hexaazatriphenylene (HAT) core units and planar dioxin (D) linkages, denoted as HD-COF. With the support of theoretical calculations, we found that the HAT units in the HD-COF induce strong, eclipsed π–π stacking. The unique stacking of HAT units and the weak in-plane conjugation of dioxin linkages leads to efficient anisotropic charge transport. We fabricated HD-COF films to minimize the grain boundary effect of bulk COFs, which resulted in enhanced conductivity. As a result, the HD-COF films showed an electrical conductivity as high as 1.25 S cm−1 after doping with tris(4-bromophenyl)ammoniumyl hexachloroantimonate.  相似文献   

3.
We present the first example of charged imidazolium functionalized porphyrin-based covalent organic framework (Co-iBFBim-COF-X) for electrocatalytic CO2 reduction reaction, where the free anions (e.g., F, Cl, Br, and I) of imidazolium ions nearby the active Co sites can stabilize the key intermediate *COOH and inhibit hydrogen evolution reaction. Thus, Co-iBFBim-COF-X exhibits higher activity than the neutral Co-BFBim-COF, following the trend of F<Cl<Br<I. Particularly, the Co-iBFBim-COF-I showed nearly 100 % CO2 selectivity at a low full-cell voltage of 2.3 V, and achieved a high CO2 partial current density of 52 mA cm−2 with a turnover frequency of 3018 h−1 at 2.4 V in the anion membrane electrode assembly, which is 3.57 times larger than that of neutral Co-BFBim-COF. This work provides new insight into the importance of free anions in the stabilization of intermediates and decreasing the local binding energy of H2O with active moiety to enhance CO2 reduction reaction.  相似文献   

4.
Crystalline triazine-based covalent organic frameworks (COFs) are aromatic nitrogen-rich porous materials. COFs typically show high thermal/chemical stability, and are promising for energy applications, but often require harsh synthesis conditions and suffer from low crystallinity. In this work, we propose an environmentally friendly route for the synthesis of crystalline COFs from CO2 molecules as a precursor. The mass ratio of CO2 conversion into COFs formula unit reaches 46.3 %. The synthesis consists of two steps; preparation of 1,4-piperazinedicarboxaldehyde from CO2 and piperazine, and condensation of the dicarboxaldehyde and melamine to construct the framework. The CO2-derived COF has a 3-fold interpenetrated structure of 2D layers determined by powder X-ray diffraction, high-resolution transmission electron microscopy, and select-area electron diffraction. The structure shows a high Brunauer–Emmett–Teller surface area of 945 m2 g−1 and high stability against strong acid (6 M HCl), base (6 M NaOH), and boiling water over 24 hours. Post-modification of the framework with oxone has been demonstrated to modulate hydrophilicity, and it exhibits proton conductivity of 2.5×10−2 S cm−1 at 85 °C, 95 % of relative humidity.  相似文献   

5.
Herein, we have designed and synthesized two heteroatom (N, O) rich covalent organic frameworks (COF), PD-COF and TF-COF , respectively, to demonstrate their relative effect on CO2 adsorption capacity and also CO2/N2 selectivity. Compared to the non-fluorinated PD-COF (BET surface area 805 m2 g−1, total pore volume 0.3647 ccg−1), a decrease in BET surface area and also pore volume have been observed for fluorinated TF-COF due to the incorporation of fluorine to the porous framework (BET surface area 451 m2 g−1, total pore volume 0.2978 ccg−1). This fact leads to an enormous decrease in the CO2 adsorption capacity and CO2/N2 selectivity of TF-COF , though it shows stronger affinity towards CO2 with a Qst of 37.76 KJ/mol. The more CO2 adsorption capacity by PD-COF can be attributed to the large specific surface area with considerable amount of micropore volume compared to the TF-COF . Further, PD-COF exhibited CO2/N2 selectivity of 16.8, higher than that of TF-COF (CO2/N2 selectivity 13.4).  相似文献   

6.
As a conjugated and unsymmetric building block composed of an electron-poor seven-membered sp2 carbon ring and an electron-rich five-membered carbon ring, azulene and its derivatives have been recognized as one of the most promising building blocks for novel electronic devices due to its intrinsic redox activity. By using 1,3,5-tris(4-aminophenyl)-benzene and azulene-1,3-dicarbaldehyde as the starting materials, an azulene(Azu)-based 2D conjugated covalent organic framework, COF-Azu, is prepared through liquid-liquid interface polymerization strategy for the first time. The as-fabricated Al/COF-Azu/indium tin oxide (ITO) memristor shows typical non-volatile resistive switching performance due to the electric filed induced intramolecular charge transfer effect. Associated with the unique memristive performance, a simple convolutional neural network is built for image recognition. After 8 epochs of training, image recognition accuracy of 80 % for a neutral network trained on a larger data set is achieved.  相似文献   

7.
Covalent organic frameworks have recently shown high potential for photocatalytic hydrogen production. However, their structure-property-activity relationship has not been sufficiently explored to identify a research direction for structural design. Herein, we report the design and synthesis of four benzotrithiophene (BTT)-based covalent organic frameworks (COFs) with different conjugations of building units, and their photocatalytic activity for hydrogen production. All four BTT-COFs had slipped parallel stacking patterns with high crystallinity and specific surface areas. The change in the degree of conjugation was found to rationally tune the rate of photocatalytic hydrogen evolution. Based on the experimental and calculation results, the tunable photocatalytic performance could be mainly attributed to the electron affinity and charge trapping of the electron accepting units. This study provides important insights for designing covalent organic frameworks for efficient photocatalysts.  相似文献   

8.
Environmental pollution is one of the most severe problems facing today, including water pollution and the greenhouse effect. Therefore, developing materials with high-efficiency dyes adsorption and CO2 uptake is significant. Covalent organic frameworks(COFs), as a burgeoning class of crystalline porous polymers, present a promising application potential in areas related to pollution regulation due to their exciting surface properties. Herein, we report a 3D COF with a high specific surface area(BET about 2072 m2/g) by utilizing tetrahedral and rectangle building blocks connected through[4+4] imine condensation reactions to synthesize. The obtained COF not only can separate dyes from water effectively but also shows a remarkable CO2 uptake capacity. This research thus provides a promising material to remove dyes and adsorb CO2 in environmental remediation.  相似文献   

9.
Converting CO2 into chemicals with electricity generated by renewable energy is a promising way to achieve the goal of carbon neutrality. Carbon-based materials have the advantages of low cost, wide sources and environmental friendliness. In this work, we prepared a series of boron-doped covalent triazine frameworks and found that boron doping can significantly improve the CO selectivity up to 91.2% in the CO2 electroreduction reactions(CO2RR). The effect of different doping ratios on the activity by adjusting the proportion of doped atoms was systematically investigated. This work proves that the doping modification of non-metallic materials is a very effective way to improve their activity, and also lays a foundation for the study of other element doping in the coming future.  相似文献   

10.
The high local electron density and efficient charge carrier separation are two important factors to affect photocatalytic activity, especially for the CO2 photoreduction reaction. However, the systematic studies on the structure-functional relationship regarding the above two factors based on precisely structure model are rarely reported. Herein, as a proof-of-concept, we developed a new strategy on the evaluation of local electron density by controlling the relative electron-deficient (ED) and electron-rich (ER) intensity of monomer at a molecular level based on three rational-designed vinylene-linked sp2 carbon-covalent organic frameworks (COFs). As expected, the as-prepared vinylene-linked sp2 carbon-conjugated metal-covalent organic framework (MCOFs) (VL-MCOF-1) with molecular junction exhibited excellent activities for CO2-to-HCOOH conversion (283.41 μmol g−1 h−1) and high selectivity of 97.1 %, much higher than the VL-MCOF-2 and g-C34N6-COF, which is due to the synergistic effect of the multi-electronic metal clusters (Cu3(PyCA)3) (PyCA=pyrazolate-4-carboxaldehyde) as strong ER roles and cyanopyridine units as ED roles and active sites, as well as the boosted photo-induced charge separation efficiency of vinyl connection and increased light utilization ability. These results not only provide a strategy for regulating the electron-density distribution of photocatalysts at the molecular level but also offers profound insights for metal clusters-based COFs to effective CO2 conversion.  相似文献   

11.
With the rapid development of integrated circuits towards miniaturization and complexity, there is an urgent need for materials with low dielectric constant/loss and high processing temperatures to effectively prevent signal delay and crosstalk. With high porosity, thermal stability, and easy structural modulation, covalent organic frameworks have great potential in the field of low dielectric materials. However, the optimization of dielectric properties by modulating the conjugated/plane curvature structure of covalent organic frameworks (COFs) has rarely been reported. Accordingly, we herein innovatively prepare COF films with adjustable planar curvature, hence possessing ultralow dielectric constant (1.9 at 1 kHz), ultralow dielectric loss at 1 kHz (0.0029 at room temperature, 0.0052 at 200 °C), high thermal decomposition temperature (5 % weight loss temperature, 473 °C) and good hydrophobicity (water contact angle, 105.3°). Also, to the best of our knowledge, we are the first to report that the resulting COF film enables high surface potential (≈320 V) for one week, attributing to its intrinsic high porosity, thus presenting great potential in electret applications. Accordingly, this innovative work provides a readily available and scalable idea to prepare materials with comprehensively excellent dielectric and electret properties as well as high processing temperatures simultaneously for advanced electronic device applications.  相似文献   

12.
Phthalocyanines (PCs) are intriguing building blocks owing to their stability, physicochemical and catalytic properties. Although PC-based polymers have been reported before, many suffer from relatively low stability, crystallinity, and low surface areas. Utilizing a mixed-metal salt ionothermal approach, we report the synthesis of a series of metallophthalocyanine-based covalent organic frameworks (COFs) starting from 1,2,4,5-tetracyanobenzene and 2,3,6,7-tetracyanoanthracene to form the corresponding COFs named M-pPPCs and M-anPPCs, respectively. The obtained COFs followed the Irving–Williams series in their metal contents, surface areas, and pore volume and featured excellent CO2 uptake capacities up to 7.6 mmol g−1 at 273 K, 1.1 bar. We also investigated the growth of the Co-pPPC and Co-anPPC on a highly conductive carbon nanofiber and demonstrated their high catalytic activity in the electrochemical CO2 reduction, which showed Faradaic efficiencies towards CO up to 74 % at −0.64 V vs. RHE.  相似文献   

13.
Dual-atom catalysts (DAC) are deemed as promising electrocatalysts due to the abundant active sites and adjustable electronic structure, but the fabrication of well-defined DAC is still full of challenges. Herein, bonded Fe dual-atom catalysts (Fe2DAC) with Fe2N6C8O2 configuration were developed through one-step carbonization of a preorganized covalent organic framework with bimetallic Fe chelation sites (Fe2COF). The transition from Fe2COF to Fe2DAC involved the dissociation of the nanoparticles and the capture of atoms by carbon defects. Benefitting from the optimized d-band center and enhanced adsorption of OOH* intermediates, Fe2DAC exhibited outstanding oxygen reduction activity with a half-wave potential of 0.898 V vs. RHE. This work will guide more fabrication of dual-atom and even cluster catalysts from preorganized COF in the future.  相似文献   

14.
Covalent organic frameworks (COFs) are highly desirable for achieving high-efficiency overall photosynthesis of hydrogen peroxide (H2O2) via molecular design. However, precise construction of COFs toward overall photosynthetic H2O2 remains a great challenge. Herein, we report the crystalline s-heptazine-based COFs (HEP-TAPT-COF and HEP-TAPB-COF) with separated redox centers for efficient H2O2 production from O2 and pure water. The spatially and orderly separated active sites in HEP-COFs can efficiently promote charge separation and enhance photocatalytic H2O2 production. Compared with HEP-TAPB-COF, HEP-TAPT-COF exhibits higher H2O2 production efficiency for integrating dual O2 reduction active centers of s-heptazine and triazine moieties. Accordingly, HEP-TAPT-COF bearing dual O2 reduction centers exhibits a remarkable solar-to-chemical energy efficiency of 0.65 % with a high apparent quantum efficiency of 15.35 % at 420 nm, surpassing previously reported COF-based photocatalysts.  相似文献   

15.
Optimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron-donating or withdrawing groups in the pores. Intramolecular donor-acceptor (D-A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro-functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high-activity COF photocatalysts with intramolecular D-A structures not easily accessible using traditional synthetic approaches.  相似文献   

16.
Molecular p-dopants designed to undergo electron transfer with organic semiconductors are typically planar molecules with high electron affinity. However, their planarity can promote the formation of ground-state charge transfer complexes with the semiconductor host and results in fractional instead of integer charge transfer, which is highly detrimental to doping efficiency. Here, we show this process can be readily overcome by targeted dopant design exploiting steric hindrance. To this end, we synthesize and characterize the remarkably stable p-dopant 2,2′,2′′-(cyclopropane-1,2,3-triylidene)tris(2-(perfluorophenyl)acetonitrile) comprising pendant functional groups that sterically shield its central core while retaining high electron affinity. Finally, we demonstrate it outperforms a planar dopant of identical electron affinity and increases the thin film conductivity by up to an order of magnitude. We believe exploiting steric hindrance represents a promising design strategy towards molecular dopants of enhanced doping efficiency.  相似文献   

17.
One-unit-cell, single-crystal, hexagonal CuInP2S6 atomically thin sheets of≈0.81 nm in thickness was successfully synthesized for photocatalytic reduction of CO2. Exciting ethene (C2H4) as the main product was dominantly generated with the yield-based selectivity reaching ≈56.4 %, and the electron-based selectivity as high as ≈74.6 %. The tandem synergistic effect of charge-enriched Cu−In dual sites confined on the lateral edge of the CuInP2S6 monolayer (ML) is mainly responsible for efficient conversion and high selectivity of the C2H4 product as the basal surface site of the ML, exposing S atoms, can not derive the CO2 photoreduction due to the high energy barrier for the proton-coupled electron transfer of CO2 into *COOH. The marginal In site of the ML preeminently targets CO2 conversion to *CO under light illumination, and the *CO then migrates to the neighbor Cu sites for the subsequent C−C coupling reaction into C2H4 with thermodynamic and kinetic feasibility. Moreover, ultrathin structure of the ML also allows to shorten the transfer distance of charge carriers from the interior onto the surface, thus inhibiting electron-hole recombination and enabling more electrons to survive and accumulate on the exposed active sites for CO2 reduction.  相似文献   

18.
Rational regulation of electronic structures and functionalities of framework materials still remains challenging. Herein, reaction of 4,4′,4′′-nitrilo-tribenzhydrazide with tris(μ2-4-carboxaldehyde-pyrazolato-N,N′)-tricopper (Cu3Py3) generates the crystalline copper organic framework USTB-11(Cu). Post-modification with divalent nickel ions affords the heterometallic framework USTB-11(Cu,Ni). Powder X-ray diffraction and theoretical simulations reveal their two-dimensional hexagonal structure geometry. A series of advanced spectroscopic techniques disclose the mixed CuI/CuII state nature of Cu3Py3 in USTB-11(Cu,Ni) with a uniform bistable Cu34+(CuI2CuII) : Cu35+(CuICuII2) (ca. 1 : 3) oxidation state, resulting in a significantly improved formation efficiency of the charge-separation state. This endows the Ni sites with enhanced activity and USTB-11(Cu,Ni) with outstanding photocatalytic CO2 to CO performance with a conversion rate of 22 130 μmol g−1 h−1 and selectivity of 98 %.  相似文献   

19.
The full reaction photosynthesis of H2O2 that can combine water-oxidation and oxygen-reduction without sacrificial agents is highly demanded to maximize the light-utilization and overcome the complex reaction-process of anthraquinone-oxidation. Here, a kind of oxidation-reduction molecular junction covalent-organic-framework (TTF-BT-COF) has been synthesized through the covalent-coupling of tetrathiafulvalene (photo-oxidation site) and benzothiazole (photo-reduction site), which presents visible-light-adsorption region, effective electron-hole separation-efficiency and photo-redox sites that enables full reaction generation of H2O2. Specifically, a record-high yield (TTF-BT-COF, ≈276 000 μM h−1 g−1) for H2O2 photosynthesis without sacrificial agents has been achieved among porous crystalline photocatalysts. This is the first work that can design oxidation-reduction molecular junction COFs for full reaction photosynthesis of H2O2, which might extend the scope of COFs in H2O2 production.  相似文献   

20.
Covalent organic frameworks are a new class of crystalline organic polymers possessing a high surface area and ordered pores. Judicious selection of building blocks leads to strategic heteroatom inclusion into the COF structure. Owing to their high surface area, exceptional stability and molecular tunability, COFs are adopted for various potential applications. The heteroatoms lining in the pores of COF favor synergistic host–guest interaction to enhance a targeted property. In this report, we have synthesized a resorcinol‐phenylenediamine‐based COF which selectively adsorbs CO2 into its micropores (12 Å). The heat of adsorption value (32 kJ mol?1) obtained from the virial model at zero‐loading of CO2 indicates its favorable interaction with the framework. Furthermore, we have anchored small‐sized Ag nanoparticles (≈4–5 nm) on the COF and used the composite for chemical fixation of CO2 to alkylidene cyclic carbonates by reacting with propargyl alcohols under ambient conditions. Ag@COF catalyzes the reaction selectively with an excellent yield of 90 %. Recyclability of the catalyst has been demonstrated up to five consecutive cycles. The post‐catalysis characterizations reveal the integrity of the catalyst even after five reaction cycles. This study emphasizes the ability of COF for simultaneous adsorption and chemical fixation of CO2 into corresponding cyclic carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号