首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past decade, the development of gene therapy technology has focused on the design of new nonviral carriers for gene delivery. Proteins modified with polyethyleneimine[1] or polylysine[2] as well as dendrites[3] have shown to be perspective carriers for DNA targeted delivery. The usage of protein conjugates as carriers of biologically active compounds will depend on the adjustment of their immune properties. To investigate this we have prepared starburst carbon chain polymer/protein conjugates containing low molecular weight biologically active compounds, salsolinol and bradykinin, in the polymer moieties and studied their immune properties. We have shown that chemical structure of the polymer moiety determines the conjugate biodegradation as well as their immune properties. The starburst poly(N-vinylimidazole) transferring poly(N-vinylimidazole) and polylysine 3G lysine dendrite conjugates have been prepared. The study of their ability to bind DNA and to guarantee its targeted delivery have shown that they are perspective DNA carriers.  相似文献   

2.
Since mechanical exfoliation of graphene in 2004, unprecedented scientific and technological advances have been achieved in the development of two-dimensional (2D) nanomaterials. These 2D nanomaterials exhibit various unique mechanical, physical and chemical properties on account of their ultrathin thickness, which are highly desirable for many applications such as catalysis, optoelectronics, energy storage/conversion, as well as disease diagnosis and therapeutics. In this review, we summarized recent progress on the design and fabrication of functional 2D nanomaterials capable of being applied for the cancer treatment including drug delivery, photodynamic therapy, and photothermal therapy. Their anticancer mechanisms were discussed in detail, and the related safety concerns were analyzed based on current research developments. This review is expected to provide an insight in the field of 2D nanostructured materials for anticancer applications.  相似文献   

3.
There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.  相似文献   

4.
We report the development of bioconjugated plasmonic vesicles assembled from SERS-encoded amphiphilic gold nanoparticles for cancer-targeted drug delivery. This new type of plasmonic assemblies with a hollow cavity can play multifunctional roles as delivery carriers for anticancer drugs and SERS-active plasmonic imaging probes to specifically label targeted cancer cells and monitor intracellular drug delivery. We have shown that the pH-responsive disassembly of the plasmonic vesicle, stimulated by the hydrophobic-to-hydrophilic transition of the hydrophobic brushes in acidic intracellular compartments, allows for triggered intracellular drug release. Because self-assembled plasmonic vesicles exhibit significantly different plasmonic properties and greatly enhanced SERS intensity in comparison with single gold nanoparticles due to strong interparticle plasmonic coupling, disassembly of the vesicles in endocytic compartments leads to dramatic changes in scattering properties and SERS signals, which can serve as independent feedback mechanisms to signal cargo release from the vesicles. The unique structural and optical properties of the plasmonic vesicle have made it a promising platform for targeted combination therapy and theranostic applications by taking advantage of recent advances in gold nanostructure based in vivo bioimaging and photothermal therapy and their loading capacity for both hydrophilic (nucleic acids and proteins) and hydrophobic (small molecules) therapeutic agents.  相似文献   

5.
In the last few years, our research group has focused on the design and development of plasmid DNA (pDNA) based systems as devices to be used therapeutically in the biomedical field. Biocompatible macro and micro plasmid DNA gels were prepared by a cross-linking reaction. For the first time, the pDNA gels have been investigated with respect to their swelling in aqueous solution containing different additives. Furthermore, we clarified the fundamental and basic aspects of the solute release mechanism from pDNA hydrogels and the significance of this information is enormous as a basic tool for the formulation of pDNA carriers for drug/gene delivery applications. The co-delivery of a specific gene and anticancer drugs, combining chemical and gene therapies in the treatment of cancer was the main challenge of our research. Significant progresses have been made with a new p53 encoding pDNA microgel that is suitable for the loading and release of pDNA and doxorubicin. This represents a strong valuable finding in the strategic development of systems to improve cancer cure through the synergetic effect of chemical and gene therapy.  相似文献   

6.
Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.  相似文献   

7.
Nanotechnology-based development of drug delivery systems is an attractive area of research in formulation driven R&D laboratories that makes administration of new and complex drugs feasible. It plays a significant role in the design of novel dosage forms by attributing target specific drug delivery, controlled drug release, improved, patient friendly drug regimen and lower side effects. Polysaccharides, especially chitosan, occupy an important place and are widely used in nano drug delivery systems owing to their biocompatibility and biodegradability. This review focuses on chitosan nanoparticles and envisages to provide an insight into the chemistry, properties, drug release mechanisms, preparation techniques and the vast evolving landscape of diverse applications across disease categories leading to development of better therapeutics and superior clinical outcomes. It summarizes recent advancement in the development and utility of functionalized chitosan in anticancer therapeutics, cancer immunotherapy, theranostics and multistage delivery systems.  相似文献   

8.
Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).  相似文献   

9.
Hydrophobicity has been an obstacle that hinders the use of many anticancer drugs. A critical challenge for cancer therapy concerns the limited availability of effective biocompatible delivery systems for most hydrophobic therapeutic anticancer drugs. In this study, we have developed a targeted near‐infrared (NIR)‐regulated hydrophobic drug‐delivery platform based on gold nanorods incorporated within a mesoporous silica framework (AuMPs). Upon application of NIR light, the photothermal effect of the gold nanorods leads to a rapid rise in the local temperature, thus resulting in the release of the entrapped drug molecules. By integrating chemotherapy and photothermotherapy into one system, we have studied the therapeutic effects of camptothecin‐loaded AuMP‐polyethylene glycol‐folic acid nanocarrier. Results revealed a synergistic effect in vitro and in vivo, which would make it possible to enhance the therapeutic effect of hydrophobic drugs and decrease drug side effects. Studies have shown the feasibility of using this nanocarrier as a targeted and noninvasive remote‐controlled hydrophobic drug‐delivery system with high spatial/temperal resolution. Owing to these advantages, we envision that this NIR‐controlled, targeted drug‐delivery method would promote the development of high‐performance hydrophobic anticancer drug‐delivery system in future clinical applications.  相似文献   

10.
近年来纳米材料被广泛应用于生物医学、航空航天和精细化工等领域。构成纳米材料的纳米粒子具有小尺寸效应、表面效应和宏观量子隧道效应等性质。其中金纳米粒子由于其独特的荧光特性、良好的生物相容性和表面等离子共振等性质,被广大科研人员进行深入研究。例如,在生物医学领域,科研人员构建了一系列新型的金纳米比色传感器、光学探针及各类载药体系等。然而,目前金纳米粒子仍存在水分散性差、肾清除效率低和量子发射产率低等问题,限制了其广泛应用。因此,研究人员对金纳米粒子表面进行多样化修饰,从而能有效克服上述缺点。本文就目前主流配体表面修饰金纳米粒子的研究进展进行了详细总结,着重介绍了功能化金纳米粒子在生物成像、生物检测、生物治疗三方面的应用,最后对金纳米粒子的临床治疗机制的探索以及商业化的应用进行了展望,希望能为相关领域的研究者们提供新思路。  相似文献   

11.
Approximately two decades ago, gold catalyst opened up a new view of their properties when they are introduced in the form of nanomaterials, since at that time, many approaches to preparation and use of gold nanoparticles started to be used in many practical applications. Today, the research activity relating to gold nanomaterials is becoming systematic and goes further to make connections between their surface structure, chemical and physical properties, and possible applications. Since electrodeposition is one of the most controllable methods used to prepare nanoparticles, nanowires, and nanoclusters of gold, the present review gives preference on their electrochemical synthesis. The relationship between catalytic activity, size, morphology and stability of gold nanomaterials is discussed in detail. Based on the properties of the prepared gold nanocatalysts, their new applications in chemical, photochemical, and electrochemical reactions have been observed.  相似文献   

12.
Antimicrobial resistance was one of the top priorities for global public health before the start of the 2019 coronavirus pandemic (COVID-19). Moreover, in this changing medical landscape due to COVID-19, finding new organic structures with antimicrobial and antiviral properties is a priority in current research. The Biginelli synthesis that mediates the production of pyrimidine compounds has been intensively studied in recent decades, especially due to the therapeutic properties of the resulting compounds, such as calcium channel blockers, anticancer, antiviral, antimicrobial, anti-inflammatory or antioxidant compounds. In this review we aim to review the Biginelli syntheses reported recently in the literature that mediates the synthesis of antimicrobial compounds, the spectrum of their medicinal properties, and the structure–activity relationship in the studied compounds.  相似文献   

13.
14.
One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the “hybrid strategy”, namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term “hybrid” has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.  相似文献   

15.
The photoactivation of potential anticancer metal complexes is a hot topic of current research as it may lead to the development of more selective drugs. Photoactivated chemotherapy (PACT) with coordination compounds is usually based on a (photo)chemical reaction taking place at the metal center. Herein, a new strategy is exploited that consists of “photomodifying” a ligand coordinated to metal ions. Platinum(II) complexes from photoswitchable 1,2‐dithienylethene‐containing ligands have been prepared, which exhibit two interconvertible photoisomeric forms that present distinct DNA‐interacting properties and cytotoxic behaviors.  相似文献   

16.
17.
Cancer is one of the most serious human diseases, causing millions of deaths worldwide annually, and, therefore, it is one of the most investigated research disciplines. Developing efficient anticancer tools includes studying the effects of different natural enzymes of plant and microbial origin on tumor cells. The development of various smart delivery systems based on enzyme drugs has been conducted for more than two decades. Some of these delivery systems have been developed to the point that they have reached clinical stages, and a few have even found application in selected cancer treatments. Various biological, chemical, and physical approaches have been utilized to enhance their efficiencies by improving their delivery and targeting. In this paper, we review advanced delivery systems for enzyme drugs for use in cancer therapy. Their structure-based functions, mechanisms of action, fused forms with other peptides in terms of targeting and penetration, and other main results from in vivo and clinical studies of these advanced delivery systems are highlighted.  相似文献   

18.
19.
Marine actinomycetes, Streptomyces species, produce a variety of halogenated compounds with diverse structures and a range of biological activities owing to their unique metabolic pathways. These halogenated compounds could be classified as polyketides, alkaloids (nitrogen-containing compounds) and terpenoids. Halogenated compounds from marine actinomycetes possess important biological properties such as antibacterial and anticancer activities. This review reports the sources, chemical structures and biological activities of 127 new halogenated compounds originated mainly from Streptomyces reported from 1992 to 2020.  相似文献   

20.
Brain cancer, one of the most lethal diseases, urgently requires the discovery of novel theranostic agents. In this context, molecules based on six-membered phosphorus heterocycles – phosphaphenalenes – are especially attractive; they possess unique characteristics that allow precise chemical engineering. Herein, we demonstrate that subtle structural modifications of the phosphaphenalene-based gold(I) complexes lead to modify their electronic distribution, endow them with marked photophysical properties and enhance their efficacy against cancer. In particular, phosphaphenalene-based gold(I) complexes containing a pyrrole ring show antiproliferative properties in 14 cell lines including glioblastomas, brain metastases, meningiomas, IDH-mutant gliomas and head and neck cancers, reaching IC50 values as low as 0.73 μM. The bioactivity of this new family of drugs in combination with their photophysical properties thus offer new research possibilities for both the fundamental investigation and treatment of brain cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号