共查询到20条相似文献,搜索用时 203 毫秒
1.
The Jaynes–Cummings model plays an important role in quantum entanglement and state measurements. Here, we discuss how to realize it in a waveguide-mediated interaction system, which comprises a giant atom and a resonator. We show the vacuum Rabi splitting and discuss how to achieve a unidirectional transport. We extend the Purcell effect in cQED to this waveguide QED system, showing how to control the giant atom decay rate. Our design can further be built experimentally and has application in quantum manipulation. 相似文献
2.
We study the nonreciprocal properties of transmitted photons in a chiral waveguide quantum electrodynamics (QED) system, including single- and two-photon transmissions and second-order correlations. For the single-photon transmission, the nonreciprocity is induced by the effects of chiral coupling and atomic dissipation in the weak coupling region. It vanishes in the strong coupling regime when the effect of atomic dissipation becomes ignorable. In the case of two-photon transmission, there exist two ways of going through the emitter: independently as plane waves and formation of bound state. Besides the nonreciprocal behavior of plane waves, the bound state that differs in two directions also alters transmission probabilities. In addition, the second-order correlation of transmitted photons depends on the interference between plane wave and bound state. The destructive interference leads to the strong antibunching in the weak coupling region, while the effective formation of bound state leads to the strong bunching in the intermediate coupling region. However, the negligible interactions for left-propagating photons hardly change the statistics of the input coherent state. 相似文献
3.
We develop a master equation approach to describe the dynamics of distant resonators coupled through a one-dimensional waveguide. Our method takes into account the back-actions of the reservoirs, and enables us to calculate the exact dynamics of the complete system at all times. We show that such system can cause nonexponential and long-lived photon decay due to the existence of a relaxation effect. The physical origin of non-Markovianity in our model system is the finite propagation speed resulting in time delays in communication between the nodes, and strong decay rate of the emitters into the waveguide. When the distance satisfies the standing wave condition, we find that when the time delay is increased, the dark modes formation is no longer perfect, and the average photon number of dark mode decreases in steady time limit. 相似文献
4.
基于腔量子电动力学(QED)提出一种利用两对纠缠的级联型三能级原子与单模腔场系统制备原子-原子最大纠缠态的简单方案,最初两原子之间、两腔场之间互不纠缠,使其中一个原子与一个腔场发生作用,即纠缠交换,该过程仅需对单个腔场态测量就可实现从未有直接作用的两个原子之间的纠缠,精确控制原子与腔场的相互作用时间可获得具有最大保真度的纠缠态.该方案可以延长腔的有效泄漏时间,从而能有效克服光腔的消相干的影响,这样大大降低了系统对腔的品质的要求. 相似文献
5.
铌酸锂材料具有宽的透光范围和高的非线性光学、电光、声光、热光系数,且化学性能稳定,是理想的光子集成芯片的衬底材料。在量子光学领域,人们已经发展出一系列铌酸锂基集成器件,能够实现光子态的高效率产生、调控、频率转换、存储和异质集成的单光子探测,有望实现全集成的频率态操控、确定性多光子态制备和单光子间相互作用,最终形成全功能集成的有源光量子芯片,推动量子物理基础研究和光量子信息应用发展。文章回顾了基于铌酸锂基量子集成的研究进展,并对其在未来光量子信息时代的机遇与挑战进行探讨。 相似文献
6.
近年来,超导量子计算的研究有了很大的进展.本文首先介绍了nSQUID新型超导量子比特的制备和研究进展,包括器件的平面多层膜制备工艺和量子相干性的研究.这类器件在量子态的传输速度和二维势系统的基础物理问题研究方面有着很大的优越性.其次,国际上新近发展的平面形式的transmon和Xmon超导量子比特具有更长的量子相干时间,在器件的设计和耦合方面也有相当的灵活性.本文介绍了我们和浙江大学与中国科学技术大学等单位合作逐步完善的这种形式的Xmon器件的制备工艺、制备出的多种耦合量子比特芯片,以及参与合作,在国际上首次完成的多达10个超导量子比特的量子态纠缠、线性方程组量子算法的实现和多体局域态等固体物理问题的量子模拟.最后介绍了基于这些超导量子比特器件开展的大量的量子物理、非线性物理和量子光学方面的研究,包括在Autler-Townes劈裂、电磁诱导透明、受激拉曼绝热通道、循环跃迁和关联激光等方面形成的一整套系统和独特的研究成果. 相似文献
7.
We review the basic light‐matter interactions and optical properties of chip‐based single photon sources, that are enabled by integrating single quantum dots with planar photonic crystals. A theoretical framework is presented that allows one to connect to a wide range of quantum light propagation effects in a physically intuitive and straightforward way. We focus on the important mechanisms of enhanced spontaneous emission, and efficient photon extraction, using all‐integrated photonic crystal components including waveguides, cavities, quantum dots and output couplers. The limitations, challenges, and exciting prospects of developing on‐chip quantum light sources using integrated photonic crystal structures are discussed. 相似文献
8.
单原子脉塞和单原子激光是腔量子电动力学研究的重要实验平台。本文综述关于几类单原子脉塞和单原子激光的研究工作,包括德国Walther小组的单原子脉塞、超冷原子注入的单原子脉塞,法国Haroche小组的腔量子电动力学系统、注入原子的单原子激光、以及囚禁原子和囚禁离子的单原子激光。我们介绍相关的理论工作、实验系统、以及主要结果。 相似文献
9.
玻璃基集成光量子芯片已经应用于量子计算、量子模拟、量子通信、量子精密测量等光量子信息处理领域,显示出强大的功能。文章从量子计算和量子模拟两个方面介绍利用飞秒激光三维高精度直写技术在玻璃中制备集成光量子芯片的重要进展。量子计算芯片包括面向通用量子计算的单比特到多比特光量子逻辑门以及用于解决特定问题的芯片,可实现玻色采样、量子快速傅里叶变换、量子快速到达等功能。在量子模拟方面,玻璃基光量子芯片成为研究关联粒子量子行走动力学和拓扑量子光子学的极佳平台,揭示了一维、二维和合成维度的离散以及连续时间量子行走的演化规律,展示了光子拓扑绝缘体的鲁棒性拓扑模式对量子态传输的保护作用等。 相似文献
10.
A micro-scale Fabry–Perot interferometer with high spectral resolution and tunable transmission frequency is proposed. In this scheme, two partially reflecting mirrors with a separation of several wavelengths is fabricated in a waveguide, and a two-level emitter is located between the mirrors and coupled to the waveguide with chiral interaction. We analytically show that the single emitter plays the role of a strongly dispersive medium and the full width at half maximum (FWHM) of the transmission fringes around the resonance frequency of the emitter can be narrowed by 5 orders of magnitude. The proposed micro-scale interferometer can have the same spectral resolution as meter-scale traditional interferometers. We also show that the central frequency of the narrowed transmission fringe can be tuned by adjusting the asymmetry of the emitter-waveguide coupling. Our scheme has potential applications in the fields of integrated optical circuit and quantum information processing. 相似文献
11.
在双光子跃迁下,本文基于腔量子电动力学(QED)系统提出了一种制备4粒子supersinglets的方案.方案要求腔场最初处于真空态,依次与四个腔场发生共振作用的三能级原子最初处于激发态.分析和讨论了该方案的可行性以及原子-腔场的耦合常数对保真度的影响.结果表明:1)该态保真度的值随原子与腔场相互作用时间的不同而不同,选择合适的原子-腔场相互作用过程以及对原子态的探测,可获得具有最大保真度的纠缠态;2)失谐量等于零时,耦合常数越大,保真度对原子与腔场相互作用的时间越敏感. 相似文献
12.
利用传输矩阵法,研究周期不对称度对光子晶体透射谱的影响,结果表明:当周期不对称度为零时,光子晶体透射峰随着周期数的增大而变得越精细,但其透射率均为100%不变;当周期不对称度为不等于零的恒定值时,光子晶体透射峰的透射率低于100%,但随着周期数的增大,透射峰仅变得精细而透射率不变;光子晶体透射峰的透射率随着周期不对称度增大而下降,而且不对称度越大,透射率下降越快,同时透射峰变窄的速度也越快。周期不对称度对光子晶体透射谱的影响规律,为光子晶体模型的构造和设计制备等提供方法依据。 相似文献
13.
14.
15.
Qiuchen Yan Xiaoyong Hu Yulan Fu Cuicui Lu Chongxiao Fan Qihang Liu Xilin Feng Quan Sun Qihuang Gong 《Advanced Optical Materials》2021,9(15):2001739
Quantum topological photonics is a new research field with great potential that is based on developments in both quantum optics and topological photonics. Topological photonics offers unique properties, including topological robustness and an anti-backscattering property, and these advantages are strongly required in quantum optics. Quantum technology, which includes quantum optics, represents an important direction for future technological development. However, existing quantum light sources are unstable and quantum information may easily be lost during transmission. These disadvantages have troubled researchers for a long time and no perfect solution is available thus far. Fortunately, application of topological photonics to quantum optics can help to generate robust quantum light sources and protect photons from decoherence during photon propagation. This allows the correlation and entanglement to be maintained even when photons travel over long distances. To date, quantum topological photonics has provided major breakthroughs in certain quantum devices. This Review presents the basic concepts of quantum topological photonics and summarizes how the topological protection property works in quantum light sources, quantum information transmission, and other quantum devices. Finally, an outlook is provided on the remaining challenges and potential future directions of quantum topological photonics, which can aid in exploration of additional new phenomena. 相似文献
16.
该文主要介绍了量子计算机研究的历史和现状。强调发展大规模的量子计算和实现强关联多体系统的量子模拟,是当前量子计算研究的主流。文章主体部分主要介绍了量子计算机硬件研究方面的进展,主要聚焦于几个具有qubit可集成性的量子系统:量子点系统、超导约瑟夫森结系统、离子阱系统、腔量子电动力学系统,作为实现量子计算机的最主要的候选系统,上述方向的研究吸引了国际上研究量子计算的最主要的力量。我们调研了在这些系统中,在qubit表征、操控方面最具代表性的进展,以及在实现大规模量子计算道路上的困难,和可能的解决办法。 相似文献
17.
We investigate the time evolution and asymptotic behavior of a system of two two-level atoms (qubits) interacting off-resonance with a single mode radiation field. The two atoms are coupled to each other through dipole–dipole as well as Ising interactions. An exact analytic solution for the system dynamics that spans the entire phase space is provided. We focus on initial states that cause the system to evolve to entanglement sudden death (ESD) between the two atoms. We find that combining the Ising and dipole–dipole interactions is very powerful in controlling the entanglement dynamics and ESD compared with either one of them separately. Their effects on eliminating ESD may add up constructively or destructively depending on the type of Ising interaction (Ferromagnetic or anti-Ferromagnetic), the detuning parameter value, and the initial state of the system. The asymptotic behavior of the ESD is found to depend substantially on the initial state of the system, where ESD can be entirely eliminated by tuning the system parameters except in the case of an initial correlated Bell state. Interestingly, the entanglement, atomic population and quantum correlation between the two atoms and the field synchronize and reach asymptotically quasi-steady dynamic states. Each one of them ends up as a continuous irregular oscillation, where the collapse periods vanish, with a limited amplitude and an approximately constant mean value that depend on the initial state and the system parameters choice. This indicates an asymptotic continuous exchange of energy (and strong quantum correlation) between the atoms and the field takes place, accompanied by diminished ESD for these chosen setups of the system. This system can be realized in spin states of quantum dots or Rydberg atoms in optical cavities, and superconducting or hybrid qubits in linear resonators. 相似文献
18.
We study a quantum electrodynamics(QED) system made of a two-level atom and a semi-infinite rectangular waveguide, which behaves as a perfect mirror in one end. The spatial dependence of the atomic spontaneous emission has been included in the coupling strength relevant to the eigenmodes of the waveguide. The role of retardation is studied for the atomic transition frequency far away from the cutoff frequencies. The atom-mirror distance introduces different phases and retardation times into the dynamics of the atom interacting resonantly with the corresponding transverse modes. It is found that the upper state population decreases from its initial as long as the atom-mirror distance does not vanish, and is lowered and lowered when more and more transverse modes are resonant with the atom. The atomic spontaneous emission can be either suppressed or enhanced by adjusting the atomic location for short retardation time.There are partial revivals and collapses due to the photon reabsorbed and re-emitted by the atom for long retardation time. 相似文献
19.
Shan Xiao Shiyao Wu Xin Xie Jingnan Yang Wenqi Wei Shushu Shi Feilong Song Jianchen Dang Sibai Sun Longlong Yang Yunuan Wang Sai Yan Zhanchun Zuo Ting Wang Jianjun Zhang Kuijuan Jin Xiulai Xu 《Laser u0026amp; Photonics Reviews》2021,15(9):2100009
Chiral quantum optics has attracted considerable interest in the field of quantum information science. Exploiting the spin-polarization properties of quantum emitters and engineering rational photonic nanostructures has made it possible to transform information from spin to path encoding. Here, compact chiral photonic circuits with deterministic circularly polarized chiral routing and beamsplitting are demonstrated using two laterally adjacent waveguides coupled with quantum dots. Chiral routing arises from the electromagnetic field chirality in waveguide, and beamsplitting is obtained via the evanescent field coupling. The spin- and position-dependent directional spontaneous emission are achieved by spatially selective micro-photoluminescence measurements, with a chiral contrast of up to 0.84 in the chiral photonic circuits. This makes a significant advancement for broadening the application scenarios of chiral quantum optics and developing scalable quantum photonic networks. 相似文献
20.
利用三原子W类纠缠态在腔量子电动力学体系中实现单原子态的远程制备 总被引:1,自引:0,他引:1
提出了两个利用三原子W类纠缠态作为量子通道.在腔量子电动力学(QED)体系中实现单原子态的远程制备方案:一个是接收者借助于原子与单模腔场之间的大失谐相互作用实现初始态重建,另一个则是接受者利用原子与单模腔场之间的共振相互作用完成远程态制备.两方案中都涉及到了一位发送者和两位接收者,发送者可以将被传送态远程制备到两位接收者中的任何一位的手中,而另一位接受者必须为其提供必要的协助.表明利用原子与腔场之间的大失谐相互作用的方法可以很好地克服腔场的消相干,降低对腔品质因子的要求;而利用共振相互作用的方法则无需引入辅助原子,操作简便.但不论采用何种方法,实现单原子远程态制备的总成功概率是相同的. 相似文献