首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Three-dimensional (3D) proper orthogonal decomposition (POD) analyses are conducted to investigate the near wake of sinusoidal wavy cylinders. For a wave amplitude a/Dm = 0.152, three typical spanwise wavelengths (λz) of the wavy cylinder are taken into account, i.e., λz/Dm = 1.89, 3.79 and 6.06, where Dm is the mean diameter of the wavy cylinder, among which λz/Dm = 1.89 and 6.06 are the optimum wavelengths corresponding to the largest reduction/suppression of fluid forces acting on the wavy cylinder. Time- and space-resolved three-component velocities of the near wake flow, obtained from large eddy simulation (LES) at a subcritical Reynolds number Re = 3 × 103, are used in the 3D POD analyses. Comparison is made among the wavy cylinders of the three λz/Dm values as well as between them and a smooth cylinder, in terms of POD modes, mode energy, mode coefficients, as well as reconstructed flow structures by lower modes. For the optimum λz/Dm = 1.89 and 6.06, energy associated with the first two POD modes is significantly reduced compared with that for λz/Dm = 3.79 and the smooth cylinder. Distinct characteristics are observed on the lower POD modes for the wavy cylinders. It is found that the first two POD modes for λz/Dm = 1.89 and 6.06 are linked to large-scale streamwise vortices that are additionally introduced into the near wake due to the wavy geometry. Meanwhile, POD mode 3 suggests that the wavy cylinder with the larger optimum λz/Dm (= 6.06) generates dominant hairpin-like and spanwise coherent structures (CSs) shedding from the saddle at a different frequency from those shedding from the node. Evolutionary development of these CSs is discussed based on reconstructed flows.  相似文献   

2.
This paper describes an experimental investigation of the flow past circular cylinders, with the mean flow perpendicular to the cylinder axis, at conditions that yield a strong three-dimensional behaviour. The experiments were carried out in the subcritical regime. Long cylinders with end plates were subjected to shear flow with a linear velocity profile in the spanwise direction generated by means of a curved gauze. It was concluded that spanwise cellular structures of vortex shedding emerged in the wake, more clearly for some boundary conditions than others. These structures are characterised by a portion of spanwise length, a cell, having constant shedding frequency over a time average, which implies that there were no vortex dislocations inside that cell during that time. These features were studied using flow visualisation and hot-film anemometry. Spectra of the local shedding frequency are shown, revealing the effect of the shear parameter (=0.02 and 0.04) and aspect ratio L/D (=20.6 and 8) on the stability and geometry of the cells at several Reynolds numbers in the range of 3.13×103Rem1.25×104.  相似文献   

3.
Flow development in the wake of a dual step cylinder has been investigated experimentally using Laser Doppler Velocimetry and flow visualization. The dual step cylinder model is comprised of a large diameter cylinder (D) mounted at the mid-span of a small diameter cylinder (d). The experiments have been performed for a Reynolds number (Re D ) of 1,050, a diameter ratio (D/d) of 2, and a range of large cylinder aspect ratios (L/D). The results show that the flow development is highly dependent on L/D. The following four distinct flow regimes can be identified based on vortex dynamics in the wake of the large cylinder: (1) for L/D ≥ 15, three vortex shedding cells form in the wake of the large cylinder, one central cell bounded by two cells of lower frequency, (2) for 8 < L/D ≤ 14, a single vortex shedding cell forms in the wake of the large cylinder, (3) for 2 < L/D ≤ 6, vortex shedding from the large cylinder is highly three-dimensional. When spanwise vortices are shed, they deform substantially and attain a hairpin shape in the near wake, (4) for 0.2 ≤ L/D ≤ 1, the large cylinder induces vortex dislocations between small cylinder vortices. The results show that for Regimes I to III, on the average, the frequency of vortex shedding in the large cylinder wake decreases with L/D, which is accompanied by a decrease in coherence of the shed vortices. In Regime IV, small cylinder vortices connect across the large cylinder wake, but these connections are interrupted by vortex dislocations. With decreasing L/D, the frequency of dislocations decreases and the dominant frequency in the large cylinder wake increases toward the small cylinder shedding frequency.  相似文献   

4.
This paper comprises an in-depth physical discussion of the flow-induced vibration of two circular cylinders in view of the time-mean lift force on stationary cylinders and interaction mechanisms. The gap-spacing ratio T/D is varied from 0.1 to 5 and the attack angle α from 0° to 180° where T is the gap width between the cylinders and D is the diameter of a cylinder. Mechanisms of interaction between two cylinders are discussed based on time-mean lift, fluctuating lift, flow structures and flow-induced responses. The whole regime is classified into seven interaction regimes, i.e., no interaction regime; boundary layer and cylinder interaction regime; shear-layer/wake and cylinder interaction regime; shear-layer and shear-layer interaction regime; vortex and cylinder interaction regime; vortex and shear-layer interaction regime; and vortex and vortex interaction regime. Though a single non-interfering circular cylinder does not correspond to a galloping following quasi-steady galloping theory, two circular cylinders experience violent galloping vibration due to shear-layer/wake and cylinder interaction as well as boundary layer and cylinder interaction. A larger magnitude of fluctuating lift communicates to a larger amplitude vortex excitation.  相似文献   

5.
The Xu & Yan scale-adaptive simulation (XYSAS) model is employed to simulate the flows past wavy cylinders at Reynolds number 8 × 10 3.This approach yields results in good agreement with experimental measurements.The mean flow field and near wake vortex structure are replicated and compared with that of a corresponding circular cylinder.The effects of wavelength ratios λ/D m from 3 to 7,together with the amplitude ratios a /D m of 0.091 and 0.25,are fully investigated.Owing to the wavy configuration,a maximum reduction of Strouhal number and root-meansquare (r.m.s) fluctuating lift coefficients are up to 50% and 92%,respectively,which means the vortex induced vibration (VIV) could be effectively alleviated at certain larger values of λ/D m and a /D m.Also,the drag coefficients can be reduced by 30%.It is found that the flow field presents contrary patterns with the increase of λ/D m.The free shear layer becomes much more stable and rolls up into mature vortex only further downstream when λ/D m falls in the range of 5-7.The amplitude ratio a /D m greatly changes the separation line,and subsequently influences the wake structures.  相似文献   

6.
A dual-step cylinder is comprised of two cylinders of different diameters. A large diameter cylinder (D) with low aspect ratio (L/D) is attached to the mid-span of a small diameter cylinder (d). The present study investigates the effect of Reynolds number (ReD) and L/D on dual step cylinder wake development for D/d=2, 0.2≤L/D≤3, and two Reynolds numbers, ReD=1050 and 2100. Experiments have been performed in a water flume facility utilizing flow visualization, Laser Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV). The results show that vortex shedding occurs from both the large and small diameter cylinders for 1≤L/D≤3 at ReD=2100 and 2≤L/D≤3 at ReD=1050. At these conditions, large cylinder vortices predominantly form vortex loops in the wake and small cylinder vortices form half-loop vortex connections. At lower aspect ratios, vortex shedding from the large cylinder ceases, with the dominant frequency in the large cylinder wake attributed to the passage of vortex filaments connecting small cylinder vortices. At these lower aspect ratios, the presence of the large cylinder induces periodic vortex dislocations. Increasing L/D increases the frequency of occurrence of vortex dislocations and decreases the dominant frequency in the large cylinder wake. The identified changes in wake topology are related to substantial variations in the location of boundary layer separation on the large cylinder, and, consequently, changes in the size of the vortex formation region. The results also show that the Reynolds number has a substantial effect on wake vortex shedding frequency, which is more profound than that expected for a uniform cylinder.  相似文献   

7.
The effect of a longitudinally oscillating cylinder on the two-dimensionality of flow around a downstream cylinder is studied based on a two-point correlation measured using two hot-wires. The oscillation amplitude is A/d=0.472 and the oscillation frequency fe/fs=0.0372 and 0.186, where d is the cylinder diameter and fs the frequency of natural vortex shedding from an isolated stationary cylinder. Three centre-to-centre spacing (L) ratios of the two cylinders were examined, i.e., L/d=1.8, 2.5 and 4.8, representing three typical flow regimes. The experiment was conducted at a Reynolds number (Re) of 5920, based on d and the free-stream velocity. It is found that the spanwise correlation of the flow depends on not only the oscillation but also the flow regimes. At L/d=1.8, the correlation is strongest among the three regimes, but worst in the co-shedding regime (L/d=4.8). The upstream cylinder oscillation improves the spanwise correlation of the flow in the gap of the cylinders, irrespective of regimes, especially for L/d=1.8 and 2.5, but impairs that behind the cylinders for L/d=1.8 and 2.5 due to a change in the flow regime. A theoretical analysis based on the boundary vorticity theory indicates that the oscillation increases the vorticity flux, in particular, in the spanwise direction between the cylinders, resulting in a significantly improved spanwise correlation, though this increase is negligibly small behind the downstream cylinder.  相似文献   

8.
Two dimensional flow over a circular cylinder with an upstream control rod of same diameter is simulated in unbound condition and in wall bounded conditions. The cylinders are placed at various heights from the wall and the inter-distance between cylinders is also varied. The control rod is subjected to different rotation rates. It is found that, in unbound condition, rotating the control rod decreases the critical pitch length (S/Dcr) and increases the drag and Strouhal number of the main cylinder. In presence of plane wall, the shielding provided by the separated shear layers from the control rod in cavity regime is deteriorated due to deflection of shear layers which results in higher drag and large fluctuation of lift coefficient. However, in wake impingement regime, the binary vortices from the control rod are weakened due to diffusion of vorticity and hence, the main cylinder experiences a lower drag and small lift fluctuations than that of unbound condition. The critical height of vortex suppression (H/Dcr) is higher in cavity regime than that of wake impingement regime due to the single extended-bluff body like configuration. The rotation of control rod energizes the wall boundary layer and increases the critical height of vortex suppression. Increasing the rotational rate of control rod decreases the drag force and reduces the amplitude of lift fluctuation. Analysis of the wall shear stress distribution reveals that it suffers a sudden drop at moderate height where the normal Karman vortex shedding changes to irregular shedding consisting of single row of negative vortices. Modal structures obtained from dynamic mode decomposition (DMD) reveal that the flow structures behind the main cylinder are suppressed due to wall and the flow is dominated by the wake of control rod.  相似文献   

9.
The numerical prediction of vortex-induced vibrations has been the focus of numerous investigations to date using tools such as computational fluid dynamics. In particular, the flow around a circular cylinder has raised much attention as it is present in critical engineering problems such as marine cables or risers. Limitations due to the computational cost imposed by the solution of a large number of equations have resulted in the study of mostly 2-D flows with only a few exceptions. The discrepancies found between experimental data and 2-D numerical simulations suggested that 3-D instabilities occurred in the wake of the cylinder that affect substantially the characteristics of the flow. The few 3-D numerical solutions available in the literature confirmed such a hypothesis. In the present investigation the effect of the spanwise extension of the solution domain on the 3-D wake of a circular cylinder is investigated for various Reynolds numbers between 40 and 1000. By assessing the minimum spanwise extension required to predict accurately the flow around a circular cylinder, the infinitely long cylinder is reduced to a finite length cylinder, thus making numerical solution an effective way of investigating flows around circular cylinders. Results are presented for three different spanwise extensions, namely πD/2, πD and 2πD. The analysis of the force coefficients obtained for the various Reynolds numbers together with a visualization of the three-dimensionalities in the wake of the cylinder allowed for a comparison between the effects of the three spanwise extensions. Furthermore, by showing the different modes of vortex shedding present in the wake and by analysing the streamwise components of the vorticity, it was possible to estimate the spanwise wavelengths at the various Reynolds numbers and to demonstrate that a finite spanwise extension is sufficient to accurately predict the flow past an infinitely long circular cylinder.  相似文献   

10.
邹琳  左红成  柳迪伟  王家辉  徐劲力 《力学学报》2022,54(11):2970-2983
基于定常吹吸气对波浪型圆柱近尾迹流动进行控制以增强柱体振动, 采用大涡模拟研究了亚临界雷诺数(Re = 3000)下前吹后吸和前后吸气控制方式在不同吹吸气工况对波浪型圆柱升阻力特性、时均压力系数、环量、湍动能及近尾迹流动结构的影响. 研究发现: 前吹后吸和前后吸气控制下波浪型圆柱在不同吹吸气动量系数工况脉动升力系数均显著提高, 最大较未受控直圆柱和波浪型圆柱分别提升高达636%和391%, 这主要可能归因于吹吸气控制使波浪型圆柱回流区变短, 高强度涡集中向钝体后方靠拢, 旋涡形成长度缩短, 展向涡流与顺流向涡流相互作用在波浪型圆柱下游形成的“肋状涡”变大变长, 近尾迹环量显著增大, 从而导致脉动升力系数增大, 这可能将诱导柱体产生更强的振动; 同时两种控制方式均改变了波浪型圆柱表面的压力分布, 由于在波浪型圆柱前驻点吹气使前端趋于流线型, 前吹后吸在不同吹吸气动量系数下波浪型圆柱的高压区减小, 但在后驻点吸气使得低压区增大, 而前后吸气在不同吹吸气动量系数下波浪型圆柱的高压区基本不变, 低压区增大. 研究结果可为低风速地区分布式风力俘能结构俘能效率提升提供基础理论支持.   相似文献   

11.
In order to find the intrinsic physical mechanism of the original Kármán vortex wavily distorted across the span due to the introduction of three-dimensional (3-D) geometric disturbances, a flow past a peak-perforated conic shroud is numerically simulated at a Reynolds number of 100. Based on previous work by Meiburg and Lasheras (1988), the streamwise and vertical interactions with spanwise vortices are introduced and analyzed. Then vortex-shedding patterns in the near wake for different flow regimes are reinspected and illustrated from the view of these two interactions. Generally, in regime I, spanwise vortices are a little distorted due to the weak interaction. Then in regime II, spanwise vortices, even though curved obviously, are still shed synchronously with moderate streamwise and vertical interactions. But in regime III, violently wavy spanwise vortices in some vortex-shedding patterns, typically an \(\Omega \)-type vortex, are mainly attributed to the strong vertical interactions, while other cases, such as multiple vortex-shedding patterns in sub-regime III-D, are resulted from complex streamwise and vertical interactions. A special phenomenon, spacial distribution of streamwise and vertical components of vorticity with specific signs in the near wake, is analyzed based on two models of streamwise and vertical vortices in explaining physical reasons of top and bottom shear layers wavily varied across the span. Then these two models and above two interactions are unified. Finally two sign laws are summarized: the first sign law for streamwise and vertical components of vorticity is positive in the upper shear layer, but negative in the lower shear layer, while the second sign law for three vorticity components is always negative in the wake.  相似文献   

12.
A novel actuator signal achieved by changing the ratio of the suction duty cycle to the blowing duty cycle is adopted to enhance the control effect of the synthetic jet for the flow around a circular cylinder. The suction duty cycle factor k defined as the ratio between the time duration of the suction cycle and the blowing cycle and the equivalent momentum coefficient Cμ are introduced as the determining parameters. The synthetic jet is positioned at the rear stagnation point in order to introduce symmetric perturbations upon the flow field. The proper orthogonal decomposition (POD) technique is applied for the analysis of the spanwise vorticity field. Increasing the suction duty cycle factor, the momentum coefficient is enhanced, and thus a stronger and larger scale synthetic jet vortex pair with a higher convection velocity is generated. The synthetic jet vortex pair interacts with the spanwise vorticity shear layers behind both sides of the cylinder, resulting in the variations of the wake vortex shedding modes at Re=950: for k=0.25, Cμ=0.148, vortex synchronization at the subharmonic excitation frequency with antisymmetric shedding mode; for 0.50≤k≤1.00, 0.213≤Cμ≤0.378, vortex synchronization at the excitation frequency with the symmetric or antisymmetric shedding modes; for 2.00≤k≤4.00, 0.850≤Cμ≤2.362, vortex synchronization at the excitation frequency with symmetric shedding mode. Hence, the control effect of the synthetic jet upon the wake vortex of a circular cylinder can be enhanced by increasing the suction duty cycle factor so as to increase the momentum coefficient. This is also validated at a higher Reynolds number Re=1600.  相似文献   

13.
The time-averaged velocity and streamwise vorticity fields within the wake of a stack were investigated in a low-speed wind tunnel using a seven-hole pressure probe. The experiments were conducted at a Reynolds number, based on the stack external diameter, of ReD=2.3×104. The stack, of aspect ratio AR=9, was mounted normal to a ground plane and was partially immersed in a flat-plate turbulent boundary layer, where the ratio of the boundary layer thickness to the stack height was δ/H≈0.5. The jet-to-cross-flow velocity ratio was varied from R=0 to 3, which covered the downwash, crosswind-dominated and jet-dominated flow regimes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip vortex pair located close to the free end of the stack, and the base vortex pair located close to the ground plane within the flat-plate boundary layer, were similar to those found in the wake of a finite circular cylinder, and were associated with the upwash and downwash flow fields within the stack wake, respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair had the same orientation as the base vortex pair and was associated with the jet rise. The peak vorticity and strength of the streamwise vortex structures were functions of the jet-to-cross-flow velocity ratio. For the tip vortex structures, their peak vorticity and strength reduced as the jet-to-cross-flow velocity ratio increased.  相似文献   

14.
A numerical study of the alteration of a square cylinder wake using a detached downstream thin flat plate is presented. The wake is generated by a uniform flow of Reynolds number 150 based on the side length of the cylinder, D. The sensitivity of the near wake structure to the downstream position of the plate is investigated by varying the gap distance (G) along the wake centerline in the range 0  G  7D for a constant plate length of L = D. A critical gap distance is observed to occur at Gc  2.3D that indicates the existence of two flow regimes. Regime I is characterised by vortex formation occurring downstream of the gap while for regime II, formation occurs within the gap. By varying the plate length and gap distance, a condition is found where significant unsteady total lift reduction can occur. The root mean square lift reduction is limited by an unsteady stall process on the plate.  相似文献   

15.
This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.  相似文献   

16.
The transition phenomena in the wake of a square cylinder were investigated. The existence of mode A and mode B instabilities in the wake of a square cylinder was demonstrated. The critical Reynolds numbers for the inception of these instability modes were identified through the determination of discontinuities in the St–Re curves, and were found to have mean values of 160 and 204 for the onset of mode A and B instabilities, respectively. The spectra and time traces of the wake streamwise velocity component were found to display three distinct patterns in laminar, mode A and mode B flow regimes. Streamwise vortices with different wavelength at various Reynolds numbers were observed through different measures. The symmetries and evolution of the secondary vortices were observed using laser-induced-fluorescent dye. It was found that, just like the case of a circular cylinder, the secondary vortices from the top and bottom rows were out-of-phase with each other in the mode A regime, but in-phase with each other in the mode B regime. From the flow visualization, it was qualitatively proven that there is stronger interaction between braid regions in the mode B regime. At the same time, analysis of PIV measurements quantitatively demonstrated the presence of the stronger cross flow in mode B regime when compared to the mode A regime. It suggests that the in-phase symmetry of the mode B instability is the result of strong interaction between the top and bottom vortex rows. It was also observed that although the vorticity of the secondary vortices in the mode A regime was smaller, its circulation was more than twice that of mode B instability. Compared to primary vortices, the circulations of both mode A and mode B vortices were much smaller, which indicates that the secondary vortices most likely originate from the primary vortices. The wavelengths of the streamwise vortices in the mode A and B regimes were measured using the auto-correlation method, and were found to be 5.1 (±0.1)D, 1.3 (±0.1)D, and 1.1 (±0.1)D at Re=183 (mode A), 228 and 377 (both mode B), respectively. From the present investigation, mode A instability was likely to be due to the joint-effects of the deformation of primary vortex cores and the stretching of vortex sheets in the braid region. On the other hand, mode B instability was thought to originate from the “imprinting” process.  相似文献   

17.
Flow around an oscillating cylinder in a subcritical region are numerically studied with a lattice Boltzmann method(LBM). The effects of the Reynolds number,oscillation amplitude and frequency on the vortex wake modes and hydrodynamics forces on the cylinder surface are systematically investigated. Special attention is paid to the phenomenon of resonance induced by the cylinder oscillation. The results demonstrate that vortex shedding can be excited extensively under subcritical conditions, and the response region of vibration frequency broadens with increasing Reynolds number and oscillation amplitude. Two distinct types of vortex shedding regimes are observed. The first type of vortex shedding regime(VSR I) is excited at low frequencies close to the intrinsic frequency of flow, and the second type of vortex shedding regime(VSR II)occurs at high frequencies with the Reynolds number close to the critical value. In the VSR I, a pair of alternately rotating vortices are shed in the wake per oscillation cycle,and lock-in/synchronization occurs, while in the VSR II, two alternately rotating vortices are shed for several oscillation cycles, and the vortex shedding frequency is close to that of a stationary cylinder under the critical condition. The excitation mechanisms of the two types of vortex shedding modes are analyzed separately.  相似文献   

18.
The effect of cylinder aspect ratio (??H/d, where H is the cylinder height or length, and d is the cylinder diameter) on the drag of a wall-mounted finite-length circular cylinder in both subcritical and critical regimes is experimentally investigated. Two cases are considered: a smooth cylinder submerged in a turbulent boundary layer and a roughened cylinder immersed in a laminar uniform flow. In the former case, the Reynolds number Re d (??U ?? d/??, with U ?? being the free-stream velocity and ?? the fluid viscosity) was varied from 2.61?×?104 to 2.87?×?105, and two values of H/d (2.65 and 5) were examined; in the latter case, Re d ?=?1.24?×?104?C1.73?×?105 and H/d?=?3, 5 and 7. In the subcritical regime, both the drag coefficient C D and the Strouhal number St are smaller than their counterparts for a two-dimensional cylinder and reduce monotonously with decreasing H/d. The presence of a turbulent boundary layer causes an early transition from the subcritical to critical regime and considerably enlarges the Re d range of the critical regime. No laminar separation bubble occurs on the finite-length cylinder immersed in the turbulent boundary layer, and consequently, the discontinuity is not observed in the C D?CRe d and St?CRe d curves. In the roughened cylinder case, the Re d range of the critical regime grows gradually with decreasing H/d, while the C D crisis becomes less obvious. In both cases, H/d has a negligible effect on the critical value of Re d at which transition occurs from the subcritical to critical regime.  相似文献   

19.
A large eddy simulation (LES) study was conducted to investigate the three-dimensional characteristics of the turbulent flow past wavy cylinders with yaw angles from 0° to 60° at a subcritical Reynolds number of 3900. The relationships between force coefficients and vortex shedding frequency with yaw angles for both wavy cylinders and circular cylinders were investigated. Experimental measurements were also performed for the validation of the present LES results. Comparing with corresponding yawed circular cylinders at similar Reynolds number, significant differences in wake vortex patterns between wavy cylinder and circular cylinder were observed at small yaw angles. The difference in wake pattern becomes insignificant at large yaw angles. The mean drag coefficient and the Strouhal number obey the independence principle for circular cylinders at yaw angle less than 45°, while the independence principle was found to be unsuitable for yawed wavy cylinders. In general, the mean drag coefficients and the fluctuating lift coefficients of a yawed wavy cylinder are less than those of a corresponding yawed circular cylinder at the same flow condition. However, with the increase of the yaw angle, the advantageous effect of wavy cylinder on force and vibration control becomes insignificant.  相似文献   

20.
An experimental study was conducted on aspect-ratio of six finite-length wavy cylinders immersed within a Re D = 2,700 free-stream. Wavelengths of 2 and 4 diameters, as well as wave amplitude of 0.1, 0.2 and 0.3 diameters were used for a comprehensive investigation. Time-resolved particle-image velocimetry measurements and proper orthogonal decomposition analyses show that for the present large wavelength wavy cylinders, vortex-shedding behaviour of high aspect-ratio wavy cylinders observed in past studies can be altered through variations in the aspect-ratio, exact geometric node and saddle locations, as well as the presence of end-walls. This is due to the persistent formation of recirculating regions close to the end-walls under certain wavy cylinder configurations, which affect the distributions of spanwise flows and vortex formation lengths. Vortex-shedding behaviour of smaller-wavelength wavy cylinders has also been observed to be considerably less sensitive to variations in the physical configurations, due to the formation of multiple streamwise vortices at the saddles. The presence of these coherent streamwise vortices is postulated to play a key role in significantly reducing flow-altering effects associated with the end-walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号