首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study uses the LES code AVBP, developed at CERFACS, to simulate transcritical flows. Real gas effects are accounted for by the use of a cubic equation of state, in conjunction with appropriate viscosity and thermal conductivity coefficients. First a single nitrogen round jet at supercritical pressure injected in a gaseous reservoir is simulated. Two cases are considered, one demonstrating a transcritical injection (high density injection), the other being directly injected at supercritical temperature (lower density injection). Comparison with available measurements shows good agreement. Finally, the simulation of a reacting case from the Mascotte bench (ONERA) is performed, consisting in a single coaxial injector injecting transcritical oxygen and supercritical hydrogen in a 60 bar chamber. Mean flow characteristics are in good agreement with the experimental observations of OH* emission, whereas temperature comparisons are more difficult to interpret. To cite this article: T. Schmitt et al., C. R. Mecanique 337 (2009).  相似文献   

2.
3.
The primary atomization was studied in a 300 μm thickness water sheet, generated by a planar airblast atomizer. The research novelty consisted in increasing the airflow absolute pressure from atmospheric conditions to 6 bar. The experimental techniques employed included Oscillometry by Laser Intensity Reflexion (ORIL), Laser Doppler Velocimetry (LDV) and flow visualization by fast video camera. The atomization mechanisms, described in the literature at atmospheric environments, were observed at high pressure conditions, for a constant momentum flux ratio. Furthermore, a new atomization mechanism was observed at high values of this ratio. Finally, dimensionless relations have been proposed for the global oscillation frequency, minimum air oscillation velocity, break-up distance and transversal wavelength. To cite this article: V.G. Fernandez et al., C. R. Mecanique 337 (2009).  相似文献   

4.
An experimental mixing layer in water at Reynolds number 440 is investigated. A colored viscoelastic solution is introduced in the shear layer before the roll-up dynamics. On the basis of flow visualization and local velocity measurements, it is found that compared to the Newtonian case, the roll-up process is affected by the non-Newtonian behavior of the viscoelastic solution. The effect consists of the appearance of secondary eddies in the mixing layer corresponding to the production of higher harmonics in the vorticity distribution. Consequently, there is a frequency doubling of the local velocity oscillations in the mixing layer. To cite this article: F. Sausset et al., C. R. Mecanique 332 (2004).

Résumé

Une étude expérimentale de la couche de mélange à un nombre de Reynolds de 440 est réalisée. Une solution viscoélastique colorée est introduite dans la couche cisaillée stationnaire juste avant la formation des tourbillons. En utilisant un mesure locale de la vitesse et une technique de visualisation par fluorescence, il est montré que la formation tourbillonnaire est affectée par le comportement non-Newtonien de la solution viscoélastique par rapport au cas Newtonien. Cet effet correspond à la formation de tourbillons secondaires produisant un harmonique supérieur dans la répartition spatiale de vorticité. En conséquence, un doublement de la fréquence des oscillations de la vitesse locale dans la couche de mélange est observé. Pour citer cet article : F. Sausset et al., C. R. Mecanique 332 (2004).  相似文献   

5.
A new approach is advocated to compute at a low cpu time cost the rigid-body motions of settling solid particles when inertial effects are negligible. In addition to the relevant boundary-integral equations, the numerical implementation and a few convincing benchmark tests we address two configurations of equivalent spheres and spheroids, i.e. that exhibit when isolated the same settling velocity. To cite this article: A. Sellier, C. R. Mecanique 332 (2004).

Résumé

On propose une approche originale pour déterminer le mouvement d'une assemblée de particules solides et de formes arbitraires soumise à l'action de la pesanteur dans l'approximation de Stokes. Outre les intégrales de frontière et la méthode numérique associées on présente quelques comparaisons et examine le cas de deux configurations de sphères et ellipsoides de révolution équivalents, c'est-à-dire dotés lorsqu'ils sont seuls de la même vitesse de sédimentation. Pour citer cet article : A. Sellier, C. R. Mecanique 332 (2004).  相似文献   

6.
The first bifurcation in a lid-driven cavity characterized by three-dimensional Taylor–Görtler-Like instabilities is investigated for a cubical cavity with spanwise periodic boundary conditions at Re=1000. The modes predicted by a global linear stability analysis are compared to the results of a direct numerical simulation. The amplification rate, and the shape of the three-dimensional perturbation fields from the direct numerical simulation are in very good agreement with the characteristics of the steady S1 mode from the stability analysis, showing that this mode dominates the other unstable unsteady modes. To cite this article: J. Chicheportiche et al., C. R. Mecanique 336 (2008).  相似文献   

7.
Data assimilation is used to couple numerical simulations and laboratory experiments of unsteady fluid flows in a stratified, rotating fluid. The experiments are performed on the large Coriolis turntable (Grenoble) and the simulations are performed with a multi-layer shallow water model. Sequential assimilation of high-resolution CIV (Correlation Image Velocimetry) measurements drives the numerical model close to the experimental flow and provides an estimation of all the flow variables at each time and each point. It is then possible (i) to analyse the flow dynamics in details, (ii) to determine the model errors starting from a realistic initial condition and (iii) to test the assimilation scheme when a reduced set of data is assimilated. To illustrate this, some results on the baroclinic instability of a two-layer vortex are presented. To cite this article: M. Galmiche et al., C. R. Mecanique 331 (2003).  相似文献   

8.
9.
Ramjets are very sensitive to instabilities and their numerical predictions can only be addressed adequately by Large Eddy Simulation (LES). With this technique, solvers can be implicit or explicit and handle structured, unstructured or hybrid meshes, etc. Turbulence and combustion models are other sources of differences. The impact of these options is here investigated for the ONERA ramjet burner. To do so, two LES codes developed by ONERA and CERFACS compute one stable operating condition. Preliminary LES results of the two codes underline the overall robustness of LES. Mean flow features at the various critical sections are reasonably well predicted by both codes. Disagreement mainly appear in the chamber where combustion positions differ pointing to the importance of the combustion and subgrid mixing models. The two LES produce different energy containing motions. With CEDRE, a low frequency dominates while AVBP produces different ranges of low frequencies that can be linked with acoustic modes of the configuration. To cite this article: A. Roux et al., C. R. Mecanique 337 (2009).  相似文献   

10.
Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines, which are unfortunately more and more prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. In this article, full annular Large Eddy Simulations (LES) of two helicopter combustors, which differ only on the swirlers' design, are performed. In both computations, LES captures self-established rotating azimuthal modes. However, the two cases exhibit different thermo-acoustic responses and the resulting limit-cycles are different. With the first design, a self-excited strong instability develops, leading to pulsating flames and local flashback. In the second case, the flames are much less affected by the azimuthal mode and remain stable, allowing an acceptable operation. Hence, this study highlights the potential of LES for discriminating injection system designs. To cite this article: P. Wolf et al., C. R. Mecanique 337 (2009).  相似文献   

11.
This Note presents an effective and accurate method for numerical calculation of the Green's function G associated with the time harmonic elasticity system in a half-plane, where an impedance boundary condition is considered. The need to compute this function arises when studying wave propagation in underground mining and seismological engineering. To theoretically obtain this Green's function, we have drawn our inspiration from the paper by Durán et al. (2005), where the Green's function for the Helmholtz equation has been computed. The method consists in applying a partial Fourier transform, which allows an explicit calculation of the so-called spectral Green's function. In order to compute its inverse Fourier transform, we separate as a sum of two terms. The first is associated with the whole plane, whereas the second takes into account the half-plane and the boundary conditions. The first term corresponds to the Green's function of the well known time-harmonic elasticity system in (cf. J. Dompierre, Thesis). The second term is separated as a sum of three terms, where two of them contain singularities in the spectral variable (pseudo-poles and poles) and the other is regular and decreasing at infinity. The inverse Fourier transform of the singular terms are analytically computed, whereas the regular one is numerically obtained via an FFT algorithm. We present a numerical result. Moreover, we show that, under some conditions, a fourth additional slowness appears and which could produce a new surface wave. To cite this article: M. Durán et al., C. R. Mecanique 334 (2006).  相似文献   

12.
We study the flow of a viscous fluid through a pipe with helical shape parameterized with , where the small parameter stands for the distance between two coils of the helix. The pipe has small cross-section of size . Using the asymptotic analysis of the microscopic flow described by the Navier–Stokes system, with respect to the small parameter that tends to zero, we find the effective fluid flow described by an explicit formula of the Poisseuile type including a small distorsion due to the particular geometry of the pipe. To cite this article: E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).

Résumé

On considère un écoulement dans un tube de section circulaire et de forme hélicoïdale paramétré par , où est la distance entre deux tours de la spirale. Le rayon de la section du tube est lui aussi supposé égal à . A partir de l'écoulement microscopique décrit par le système de Navier–Stokes et en utilisant l'analyse asymptotique par rapport à ce petit paramètre on obtient l'écoulemment effectif décrit par une formule explicite de type Poiseuille associée à une petite déviation due à la géometrie du tube. Pour citer cet article : E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).  相似文献   

13.
The numerical simulation of the free fall of a solid body in a viscous fluid is a challenging task since it requires computational domains which usually need to be several order of magnitude larger than the solid body in order to avoid the influence of artificial boundaries. Toward an optimal mesh design in that context, we propose a method based on the weighted a posteriori error estimation of the finite element approximation of the fluid/body motion. A key ingredient for the proposed approach is the reformulation of the conservation and kinetic equations in the solid frame as well as the implicit treatment of the hydrodynamic forces and torque acting on the solid body in the weak formulation. Information given by the solution of an adequate dual problem allows one to control the discretization error of given functionals. The analysis encompasses the control of the free fall velocity, the orientation of the body, the hydrodynamic force and torque on the body. Numerical experiments for the two dimensional sedimentation problem validate the method. To cite this article: V. Heuveline, C. R. Mecanique 333 (2005).  相似文献   

14.
Extended three-dimensional digital image correlation (X3D-DIC)   总被引:1,自引:0,他引:1  
A correlation algorithm is proposed to measure full three-dimensional displacement fields in a three-dimensional domain. The chosen kinematic basis for this measurement is based on continuous finite-element shape functions. It is furthermore proposed to account for the presence of strong discontinuities, similarly to extended finite element schemes, with a suited enrichment of the kinematics with discontinuities supported by a (crack) surface. An optimization of the surface geometry is proposed based on correlation residuals. The procedure is applied to analyze one loading cycle of a fatigue-cracked nodular graphite cast iron sample by using computed tomography pictures. Subvoxel crack openings are revealed and measured. To cite this article: J. Réthoré et al., C. R. Mecanique 336 (2008).  相似文献   

15.
《Comptes Rendus Mecanique》2017,345(9):620-626
We consider here the works of French, British, and German researchers in fluid mechanics from 1870 to the beginning of the twentieth century. Our aim is to understand how the term “turbulence” introduced by William Thomson in 1887, which was not used by the main researchers of the time, including Joseph Boussinesq, Osborne Reynolds, Lord Rayleigh, Horace Lamb in the first editions of his book, became classical in the 1920s. We trace the first introductions of the terms “turbulence”, “turbulent flow” in the works of relatively unknown researchers between 1889 and 1903, until it reaches the vocabulary of mainstream researchers in fluid mechanics and physics. Our result is that the shift was in 1906–1908, when the term was used in the 1906 edition of the book of Horace Lamb, and in Lanchester's book, followed by a series of papers of German researchers before the First World War.The use of the word “turbulence”, a word used for a long time for crowds or for children, in a scientific context, corresponds to the introduction of a new concept, a new understanding of a scientific phenomenon clearly identified as being different from laminar motion. The study of the use of this term is also the study of the diffusion of a new concept among researchers of the time.  相似文献   

16.
This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh–Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).  相似文献   

17.
Boundary integral equations are well suitable for the analysis of seismic waves propagation in unbounded domains. Formulations in elastodynamics are well developed. In contrast, for the dynamic analysis of viscoelastic media, there are very seldom formulations by boundary integral equations. In this Note, we propose a new and simple formulation of time harmonic viscoelasticity with the Zener model, which reduces to classical elastodynamics if a compatibility condition is satisfied by boundary conditions. Intermediate variables which satisfy the classical elastodynamic equations are introduced. It makes it possible to utilize existing numerical tools of time harmonic elastodynamics. To cite this article: S. Chaillat, H.D. Bui, C. R. Mecanique 335 (2007).  相似文献   

18.
19.
Appropriate weighted norms in H1 are presented such that the Korn type inequality is asymptotically sharp with respect to relative thickness and stiffness of the elastic plates. The weights depend crucially on the geometric structure of the plates' junction. To cite this article: O.V. Izotova et al., C. R. Mecanique 334 (2006).  相似文献   

20.
The quasistatic evolution of the mechanical state of a piezoelectric body with damage is numerically studied in this paper. Both damage and piezoelectric effects are included into the model. The variational formulation leads to a coupled system composed of two linear variational equations for the displacement field and the electric potential, and a nonlinear parabolic variational equation for the damage field. The existence of a unique weak solution is stated. Then, a fully discrete scheme is introduced by using a finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, a two-dimensional example is presented to demonstrate the behaviour of the solution. To cite this article: J.R. Fernández et al., C. R. Mecanique 336 (2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号