首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The purpose of this paper is to present formulations for beam elements based on the absolute nodal co-ordinate formulation that can be effectively and efficiently used in the case of thin structural applications. The numerically stiff behaviour resulting from shear terms in existing absolute nodal co-ordinate formulation beam elements that employ the continuum mechanics approach to formulate the elastic forces and the resulting locking phenomenon make these elements less attractive for slender stiff structures. In this investigation, additional shape functions are introduced for an existing spatial absolute nodal co-ordinate formulation beam element in order to obtain higher accuracy when the continuum mechanics approach is used to formulate the elastic forces. For thin structures where bending stiffness can be important in some applications, a lower order cable element is introduced and the performance of this cable element is evaluated by comparing it with existing formulations using several examples. Cables that experience low tension or catenary systems where bending stiffness has an effect on the wave propagation are examples in which the low order cable element can be used. The cable element, which does not have torsional stiffness, can be effectively used in many problems such as in the formulation of the sliding joints in applications such as the spatial pantograph/catenary systems. The numerical study presented in this paper shows that the use of existing implicit time integration methods enables the simulation of multibody systems with a moderate number of thin and stiff finite elements in reasonable CPU time.  相似文献   

3.
Finite elements with different orders can be used in the analysis of constrained deformable bodies that undergo large rigid body displacements. The constrained mode shapes resulting from the use of finite elements with different orders differ in the way the stiffness of the body bending and extension are defined. The constrained modes also depend on the selection of the boundary conditions. Using the same type of finite element, different sets of boundary conditions lead to different sets of constrained modes. In this investigation, the effect of the order of the element as well as the selection of the constrained mode shapes is examined numerically. To this end, the constant strain three node triangular element and the quadratic six node triangular element are used. The results obtained using the three node triangular element are compared with the higher order six node triangular element. The equations of motion for the three and six node triangular elements are formulated from assumed linear and quadratic displacement fields, respectively. Both assumed displacement fields can describe large rigid body translational and rotational displacements. Consequently, the dynamic formulation presented in this investigation can also be used in the large deformation analysis. Using the finite element displacement field, the mass, stiffness, and inertia invariants of the three and six-node triangular elements are formulated. Standard finite element assembly techniques are used to formulate the differential equations of motion for mechanical systems consisting of interconnected deformable bodies. Using a multibody four bar mechanism, numerical results of the different elements and their respective performance are presented. These results indicate that the three node triangular element does not perform well in bending modes of deformation.  相似文献   

4.
This paper is focused on the dynamic formulation of mechanical joints using different approaches that lead to different models with different numbers of degrees of freedom. Some of these formulations allow for capturing the joint deformations using a discrete elastic model while the others are continuum-based and capture joint deformation modes that cannot be captured using the discrete elastic joint models. Specifically, three types of joint formulations are considered in this investigation; the ideal, compliant discrete element, and compliant continuum-based joint models. The ideal joint formulation, which does not allow for deformation degrees of freedom in the case of rigid body or small deformation analysis, requires introducing a set of algebraic constraint equations that can be handled in computational multibody system (MBS) algorithms using two fundamentally different approaches: constrained dynamics approach and penalty method. When the constrained dynamics approach is used, the constraint equations must be satisfied at the position, velocity, and acceleration levels. The penalty method, on the other hand, ensures that the algebraic equations are satisfied at the position level only. In the compliant discrete element joint formulation, no constraint conditions are used; instead the connectivity conditions between bodies are enforced using forces that can be defined in their most general form in MBS algorithms using bushing elements that allow for the definition of general nonlinear forces and moments. The new compliant continuum-based joint formulation, which is based on the finite element (FE) absolute nodal coordinate formulation (ANCF), has several advantages: (1) It captures modes of joint deformations that cannot be captured using the compliant discrete joint models; (2) It leads to linear connectivity conditions, thereby allowing for the elimination of the dependent variables at a preprocessing stage; (3) It leads to a constant inertia matrix in the case of chain like structure; and (4) It automatically captures the deformation of the bodies using distributed inertia and elasticity. The formulations of these three different joint models are compared in order to shed light on the fundamental differences between them. Numerical results of a detailed tracked vehicle model are presented in order to demonstrate the implementation of some of the formulations discussed in this investigation.  相似文献   

5.
A refined geometrically nonlinear formulation of a thin-shell finite element based on the Kirchhoff-Love hypotheses is considered. Strain relations, which adequately describe the deformation of the element with finite bending of its middle surface, are obtained by integrating the differential equation of a planar curve. For a triangular element with 15 degrees of freedom, a cost-effective algorithm is developed for calculating the coefficients of the first and second variations of the strain energy, which are used to formulate the conditions of equilibrium and stability of the discrete model of the shell. Accuracy and convergence of the finite-element solutions are studied using test problems of nonlinear deformation of elastic plates and shells. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 160–172, September–October, 2007.  相似文献   

6.
The Absolute Nodal Coordinate Formulation (ANCF) has been initiated in 1996 by Shabana (Computational Continuum Mechanics, 3rd edn., Cambridge: Cambridge University Press, 2008). It introduces large displacements of planar and spatial finite elements relative to the global reference frame without using any local frame. A sub-family of beam, plate and cable finite elements with large deformations are proposed and employed the 3D theory of continuum mechanics. In the ANCF, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element. In contrast to other large deformation formulations, the equations of motion contain constant mass matrices as well as zero centrifugal and Coriolis inertia forces. The only nonlinear term is a vector of elastic forces. This investigation concerns a way to generate new finite element in the ANCF for laminated composite plates. This formulation utilizes the assumption that the bonds between the laminae are thin and shear is non-deformable. Consequently, the Equivalent Single Layer, ESL model, is implemented. In the ESL models, the laminate is assumed to deform as a single layer, assuming a smooth variation of the displacement field across the thickness. In this paper, the coupled electromechanical effect of Piezoelectric Laminated Plate is imposed within the ANCF thin plate element, in such a way as to achieve the continuity of the gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Convergence and accuracy of the finite-element ANCF Piezoelectric Laminated Plate is demonstrated in geometrically nonlinear static and dynamic test problems, as well as in linear analysis of natural frequencies. The computer implementation and several numerical examples are presented in order to demonstrate the use of the formulation developed in this paper. A comparison with the commercial finite element package COMSOL MULTIPHYSICS () is carried out with an excellent agreement.  相似文献   

7.
高效的三维曲梁单元   总被引:4,自引:0,他引:4  
三维井眼中延伸数千米的三维细长圆截面钢钻柱应力分析问题是一个复杂的力学问题,通常使用有限元数值分析方法对其进行受力分析。而在进行有限元分析时,现有的圆弧曲粱单元和空间直粱单元在几何上都不能很好地模拟三维曲线形状的钻柱。为了确保计算精度.其单元划分势必不能过大,结果是计算时间长,收敛性差。为了解决这一问题,显然必须构建一种新的较有效的曲梁单元。基于自然坐标系,依据圆截面空间曲粱单元节点有6个自由度——3个线位移和3个角位移,利用包含全部刚体位移模式和常应变的形函数,忽略剪切变形,假设变形后的梁轴线的弯曲曲率改变为线性变化,建立起了保证收敛性的具有12个自由度的有初始曲率和挠率的圆截面空间曲梁的有限元模型。为了证明给出的有限元模型的高效性,分析了几个静态问题,并与现有文献中的解析解或数值结果进行了比较。基于所给出的结果,可望该有限元模型可以作为分析三维空间曲粱结构的有效工具。  相似文献   

8.
A finite element is proposed for analyzing nonlinear deformation and stability of three-dimensional rods at arbitrarily large elastic displacements. Timoshenko’s model is used for taking transverse shear strains into account. The accuracy and convergence of numerical solutions are studied by an example of problems of nonlinear bending of curvilinear rods.  相似文献   

9.
悬索桥主缆线形的精细化计算需要同时考虑弯曲刚度及初始弯曲的影响,为此将主缆离散为小挠度的细长梁单元,推导包含自重项的细长梁单元的刚度矩阵,其中考虑了轴力对弯曲刚度的影响及弯矩引起的轴向刚度修正系数。基于细长梁单元编制主缆线形计算的有限元程序,采用改进的迭代法求解几何非线性结构的平衡状态,并考虑鞍座处主缆线形的修正。利用程序计算了两座悬索桥主缆在恒载作用下的变形,结果表明,主缆弯曲刚度对跨中和桥塔附近主缆线形的影响较大,且矢跨比越大,主缆线形的计算误差就越大。由弯曲刚度引起的主缆线形计算误差将会带来吊索下料长度计算不准确、索夹放样坐标不准确、成桥桥面线形达不到设计线形以及成桥吊索力分布不均匀等问题,尤其是对矢跨比较大的自锚式悬索桥,需要在设计和施工中引起足够的重视。  相似文献   

10.
张越  赵阳  谭春林  刘永健 《力学学报》2016,48(6):1406-1415
索粱结构在土木工程、航空航天等领域有着广泛的应用.在各类索梁动力学建模方法中,由于绝对节点坐标方法(absolute nodal coordinate formulation,ANCF)能够描述柔性体的大变形和大转动问题,因此非常适合大变形索梁结构的动力学建模.对绝对节点坐标索梁单元的应变进行分析可知,弯曲变形会引起单元内部轴向应变的不均匀分布,即单元轴向应变与弯曲应变相互耦合.这种应变耦合效应使单元产生伪应变能,导致单元刚度增大,造成单元失真.分析不同弯曲角下的单元应变及应变能可知,弯曲变形越大,单元失真越严重.通过构造等效一维杆单元重新描述轴向应变,实现了轴向应变与弯曲应变解耦.在此基础上推导广义弹性力,得到了绝对节点坐标索梁单元的应变解耦模型.对解耦前后的两种梁模型进行静力学和动力学仿真,结果表明;解耦模型消除了单元伪应变,相比原模型表现出更好的收敛性和曲率连续性,在相同单元数目下具有更高的精度.同时由于解耦模型降低了单元刚度,因此相比原模型,速度曲线中不再有高频振动.  相似文献   

11.
Hybrid-stress finite element method is applied for analysis of bending and vibration of composite laminated plates in this paper. Firstly, based on the modified complementary principle, a rectangular hybrid-stress plate bending element is presented which applies to analysis of laminates. Inside the element, different stress parameters are assumed according to different layers. The boundary displacements are determined by means of the assumption of YNS theory on the boundary of elements. The element formed in this way not only can take effects of transverse shear deformation and local warping into account, but also has less degrees of freedom. Then, problems of bending and vibration of laminates are solved by using this element, and the numerical results are compared with the exact solutions. This shows that the results obtained in the paper are very close to the exact results.  相似文献   

12.
A crack bridging model is presented for analysing the tensile stretching and bending of a cracked plate with a patch bonded on one side, accounting for the effect of out-of-plane bending induced by load-path eccentricity inherent to one-sided repairs. The model is formulated using both Kirchhoff–Poisson plate bending theory and Reissners shear deformation theory, within the frameworks of geometrically linear and nonlinear elasticity. The bonded patch is represented as distributed springs bridging the crack faces. The springs have both tension and bending resistances ; their stiffness constants are determined from a one-dimensional analysis for a single strap joint, representative of the load transfer from the cracked plate to the bonded patch. The resulting coupled integral equations are solved using a Galerkin method, and the results are compared with three-dimensional finite element solutions. It is found that the formulation based on Reissners plate theory provides better agreement with finite element results than the classical plate theory.  相似文献   

13.
This paper presents a semi-analytical finite element analysis of pole-type structures with circular hollow cross-section. Based on the principle of stationary potential energy and Novozhilov’s derivation of nonlinear strains, the formulations for the geometric nonlinear analysis of general shells are derived. The nonlinear shell-type analysis is then manipulated and simplified gradually into a beam-type analysis with special emphasis given on the relationships of shell-type to beam-type and nonlinear to linear analyses. Based on the theory of general shells and the finite element method, the approach presented herein is employed to analyze the ovalization of the cross-section, large displacements, the P-Δ effect as well as the overall buckling of pole-type structures. Illustrative examples are presented to demonstrate the applicability and the efficiency of the present technique to the large deformation of fiber-reinforced polymer composite poles accompanied with comparisons employing commercial finite element codes.  相似文献   

14.
To accurately model the nonlinear behavior of the pantograph/catenary systems, it is necessary to take into consideration the effect of the large deformation of the catenary and its interaction with the nonlinear pantograph system dynamics. The large deformation of the catenary is modeled in this investigation using the three-dimensional finite element absolute nodal coordinate formulation. To model the interaction between the pantograph and the catenary, a sliding joint that allows for the motion of the pan-head on the catenary cable is formulated. To this end, a non-generalized arc-length parameter is introduced in order to be able to accurately predict the location of the point of contact between the pan-head and the catenary. The resulting system of differential and algebraic equations formulated in terms of reference coordinates, finite element absolute nodal coordinates, and non-generalized arc-length and contact surface parameters are solved using computational multibody system algorithms. A detailed three-dimensional multibody railroad vehicle model is developed to demonstrate the use of the formulation presented in this paper. In this model, the interaction between the wheel and the rail is considered. For future research, a method is proposed to deal with the problem of the loss of contact between the pan-head and the catenary cable.  相似文献   

15.
导出了轻型桅杆设计计算的非线性梁与索单元理论和方法,求出的桅杆截面内力考虑了索单元的非线性影响,计入了桅杆杆身在轴压下弯曲失稳的效应。在计算桅杆时采用了增量Newton-Raphson迭代法,如果在设计荷载作用下的迭代过程收敛,则桅杆不会发生绕两个主轴的整体弯曲失稳。本文方法解决了轻型桅杆设计中的强度、整体和层间稳定及刚度计算的难题。  相似文献   

16.
17.
瞿怡鹏  孙秀婷  徐鉴 《力学学报》2023,55(2):445-461
观察表明,禽类颈部普遍具有刚柔耦合的特点,在运动过程中,可以辅助身体运动,使得头部产生大变形.在机器人、航空航天等领域普遍需要具有大变形、变刚度等特征的结构实现相关功能.受禽类脖子结构的启发,提出了一种仿鸡脖子刚柔耦合结构,阐明仿鸡脖子的仿生机理并建立大变形模型.首先,从鸡颈部的生物解剖出发,发现仿鸡脖子结构势必具有多自由度刚柔耦合的特征,因此,根据鸡脖子骨骼的构型构造出单节仿生标准单元,根据肌肉的连接方式厘清节间弹性连接,建立起仿鸡脖子刚柔耦合结构的力学模型;然后,通过定义连接矩阵描述节间弹性元件的分布和作用,由此得到任意运动下的标准单元的力平衡方程;最后,选取了几种具有代表性的工况,通过有限元分析验证理论建模方法的准确性并展示结构的非线性变刚度特征;在4种典型平面弯曲工况下得到不同变形与发力肌肉群的对应关系.文章提出的仿鸡脖子刚柔耦合结构建模具有仿生机理清晰、适合大变形计算及结构具有非线性刚度特征等特点,也解释了禽类颈部变形机理.  相似文献   

18.
过佳雯  魏承  谭春林  赵阳 《力学学报》2018,50(2):373-384
建立细长缆索大柔性多体动力学模型时,现实存在的复杂捻制几何构型多不予考虑,而是将柔索简化为材料均匀梁进行描述,致使运动仿真模型与物理实际存在一定差距. 为此,研究一种典型非线性拧绞绳股的大变形等效动力学建模方法,考虑准静态与大范围运动情况下绳股内的线接触,计算了受摩擦力及弯曲曲率影响的绳股可变弯曲刚度,通过等效梁模型避免了绳股精细建模时的大规模计算消耗. 基于连续介质力学与绝对节点坐标方法,建立了拧绞绳惯性广义坐标下的多柔体动力学模型. 为了验证等效模型的可行性,与基于有限段方法建立的精细模型进行对比仿真分析,通过位形验证了等效模型的精度. 进一步地,根据力载作用下的准静态构型,研究了特定构型绳股弯曲刚度沿轴向的分布规律;通过自重力下一端固定柔性绳摆自由运动仿真并与传统均匀梁模型相比,研究了模型弯曲特性的差异. 最后,根据能量守恒原理分析了摩擦耗散系统内各种能量间的相互转化. 拧绞绳大变形等效动力学模型能够提高绳索动力系统运动预测的仿真计算效率,还能为钢丝绳参数与构型设计提供依据.   相似文献   

19.
基面力概念在几何非线性余能有限元中的应用   总被引:2,自引:0,他引:2  
彭一江  刘应华 《力学学报》2008,40(4):496-501
以基面力为基本未知量描述一个弹性系统的应力状态并表征单元的余能,将大变形的余能分解为变形余能部分和转动余能部分,采用Lagrange乘子法放松单元的平衡方程,利用已有的弹性大变形余能原理建立了一种几何非线性显式有限元模型,编制了相应的几何非线性余能原理有限元程序. 数值算例表明:该方法具有较好的收敛性和计算精度,可进行大载荷步的大位移、大转动计算.   相似文献   

20.
针对大型周边桁架式索网天线由拉索拉压模量不同引起的本构非线性和结构大变形引起的几何非线性问题,给出了基于参变量变分原理的几何非线性有限元方法. 首先针对含预应力索单元拉压模量不同分段描述的本构关系,通过引入参变量,导出了基于参变量及其互补方程的统一描述形式,避免了传统算法需要根据当前变形对索单元张紧/松弛状态的预测,提高了算法收敛性. 然后利用拉格朗日应变描述索网天线结构大变形问题,结合几何非线性有限元法,建立了基于参变量的非线性平衡方程和线性互补方程;并给出了牛顿-拉斐逊迭代法与莱姆算法相结合的求解算法. 数值算例验证了本文提出的算法比传统算法具有更稳定的收敛性和更高的求解精度,特别适合于大型索网天线结构的高精度变形分析和预测.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号