首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In microscopic rectangular grooves various liquid wetting morphologies can be found, depending on the wettability and details of the geometry. When these morphologies are combined with a method to vary the apparent contact angle reversibly, transitions between droplike objects and elongated liquid filaments can be induced. Liquid can thus be transported on demand along the grooves. The dynamics of liquid filaments advancing into grooves as well as receding from grooves has been studied, varying the contact angle using the electrowetting effect. The dynamics of the receding filament is purely capillarity driven and depends only on the contact angle, the viscosity of the liquid, and the geometry of the groove. The length and the dynamics of the advancing filaments, on the other hand, are strongly dependent on the ionic content of the liquid and the applied ac voltage.  相似文献   

2.
The morphology of liquids confined to linear micrometer-sized grooves of triangular and rectangular cross section is studied for different substrate wettabilities. Depending on the wettability and exact geometry, either droplike morphologies or elongated liquid filaments represent the generic equilibrium structures on the substrate. Upon changing the apparent contact angle of aqueous drops by electrowetting, we are able to trigger the transition between elongated filaments and droplets. In the case of rectangular grooves, this transition allows us to advance liquid reversibly into the grooves while crossing a certain threshold contact angle. In triangular grooves, however, these elongated filaments undergo a dynamic instability when the contact angle returns to a value above the filling threshold. The different filling and drainage behavior is explained by specific aspects of the triangular and rectangular groove geometry.  相似文献   

3.
The dewetting of liquid filaments in linear grooves of a triangular cross section is studied experimentally and theoretically. Homogeneous filaments of glassy polystyrene (PS) are prepared in triangular grooves in a nonequilibrium state. At elevated temperatures, the molten PS restores its material contact angle with the substrate. Liquid filaments with a convex liquid-vapor interface decay into isolated droplets with a characteristic spacing depending on the wedge geometry, wettability, and filament width. This instability is driven by the interplay of local filament width and Laplace pressure and constitutes a wide class of 1D instabilities that also include the Rayleigh-Plateau instability as a special case. Our results show an accurately exponential buildup of the instability, suggesting that fluctuations have a minor influence in our system.  相似文献   

4.
The spreading of liquid drops on surfaces corrugated with micrometer-scale parallel grooves is studied both experimentally and numerically. Because of the surface patterning, the typical final drop shape is no longer spherical. The elongation direction can be either parallel or perpendicular to the direction of the grooves, depending on the initial drop conditions. We interpret this result as a consequence of both the anisotropy of the contact line movement over the surface and the difference in the motion of the advancing and receding contact lines. Parallel to the grooves, we find little hysteresis due to the surface patterning and that the average contact angle approximately conforms to Wenzel's law as long as the drop radius is much larger than the typical length scale of the grooves. Perpendicular to the grooves, the contact line can be pinned at the edges of the ridges, leading to large contact angle hysteresis.  相似文献   

5.
Lenses with a homogeneously aligned liquid crystal having a Fresnel structure have been prepared by using a nematic with a positive dielectric anisotropy. Their focal length can be varied continuously from the value fe for an extraordinary ray to fo for an ordinary ray by applying an electric field across the lens cell. The effective refractive index of the lens where the director is aligned perpendicular to the grooves of the Fresnel structure becomes smaller than when the director is aligned parallel to the grooves. Then the liquid crystal lens has a characteristic aberration which could not be observed in a conventional glass lens; that is, the focal length of the lens becomes different according to the incidence of rays on the different parts of the lens. The properties of the liquid crystal lens can be improved by making the director orientation axially symmetric, in the form of a concentric circle, but the polarization component rotated 90° from the incident extraordinary ray appears when the voltage is applied across the lens cell. This phenomenon is discussed in relation to the optical properties and the director orientation in a liquid crystal prism cell.  相似文献   

6.
Lenses with a homogeneously aligned liquid crystal having a Fresnel structure have been prepared by using a nematic with a positive dielectric anisotropy. Their focal length can be varied continuously from the value fe for an extraordinary ray to f o for an ordinary ray by applying an electric field across the lens cell. The effective refractive index of the lens where the director is aligned perpendicular to the grooves of the Fresnel structure becomes smaller than when the director is aligned parallel to the grooves. Then the liquid crystal lens has a characteristic aberration which could not be observed in a conventional glass lens; that is, the focal length of the lens becomes different according to the incidence of rays on the different parts of the lens. The properties of the liquid crystal lens can be improved by making the director orientation axially symmetric, in the form of a concentric circle, but the polarization component rotated 90° from the incident extraordinary ray appears when the voltage is applied across the lens cell. This phenomenon is discussed in relation to the optical properties and the director orientation in a liquid crystal prism cell.  相似文献   

7.
The aim of this paper is the preparation and characterization of cellulose/chitin blend filaments over the experimental blend ratio scope i.e., 2.89 and 6.46% (w/w) chitin content through high wet modulus (HWM) procedure. The spinnability of the invested solutions was found to vary in the following order: chitin < cellulose < 9.5:0.5 blend < 9:1 blend < 8:2 blend < 5:5 blend (9:1 means the mass ratio of cellulose to chitin, so does 9.5:0.5, 8:2, and 5:5). The cross‐section of the blend filaments is of chrysanthemum shape. It was shown through the SEM photographs that there existed grooves on the surface of filaments, which became coarse with increase in chitin content. Based on the data from X‐ray, sonic velocity, intensity, and hygroscopicity, it is concluded that the degree of crystallinity, dry and wet intensity modulus, degree of orientation, and regain rate of the filaments decreased with increase in chitin content in the experiment scope. The mechanical properties of the blend filaments are much higher than those of Crabyon fiber and normal viscose filaments, which proves that the HWM method is an efficient way of preparing cellulose/chitin blend filaments with satisfactory mechanical properties and processing property. The blend filaments prepared have an effective biostatic effect on Staphylococcus aureus, Escherchia coli, and Corinebaterium michiganence according to different testing standards. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Fukuda et al. reexamined the Berreman's model which attributes the surface anchoring to the elastic distortion of the uniaxial nematic liquid crystal induced by the grooves of a surface. They showed that at the variance with the assumption made in the original approach of Berreman, the azimuthal distortion of the director cannot be considered as negligibly small. Now this method is generalized to the biaxial nematic liquid crystals, with some approximations for the elastic constants. We obtain an additional term in the elastic distortion energy per unit area which depends on the second power of the cosine of the angle made between the main director n at infinity and the direction of the surface grooves. This additional term describes the distortion energy of the minor director m induced by the surface grooves when the n director is anchored exactly along the grooves. We have studied the stability of the n director around the grooves, and in one-constant model for each director the stability condition is that the elastic constant of the n director is the maximum.  相似文献   

9.
Inspired by the complex influence of the globular crosslinking proteins on the formation of biofilament bundles in living organisms, we study and analyze a theoretical model for the structure and thermodynamics of bundles of helical filaments assembled in the presence of crosslinking molecules. The helical structure of filaments, a universal feature of biopolymers such as filamentous actin, is shown to generically frustrate the geometry of crosslinking between the "grooves" of two neighboring filaments. We develop a coarse-grained model to investigate the interplay between the geometry of binding and mechanics of both linker and filament distortion, and we show that crosslinking in parallel bundles of helical filaments generates intrinsic torques, of the type that tend to wind the bundle superhelically about its central axis. Crosslinking mediates a non-linear competition between the preference for bundle twist and the size-dependent mechanical cost of filament bending, which in turn gives rise to feedback between the global twist of self-assembled bundles and their lateral size. Finally, we demonstrate that above a critical density of bound crosslinkers, twisted bundles form with a thermodynamically preferred radius that, in turn, increases with a further increase in crosslinking bonds. We identify the stiffness of crosslinking bonds as a key parameter governing the sensitivity of bundle structure and assembly to the availability and affinity of crosslinkers.  相似文献   

10.
Electrostatic field induced instability, morphology, and patterning of a thin liquid film confined between two electrodes with an air gap are studied on the basis of nonlinear 3D simulations, both for spatially homogeneous and heterogeneous fields. In addition to the spinodal flow resulting from the variation of field because of local thickness changes, a heterogeneous imposed field also moves the liquid from the regions of low field to high field, thus allowing a more precise control of pattern. Hexagonal packing of liquid columns is observed for a spatially homogeneous electric field, which is in accord with the e-field experiments on thin polymer films (Schaffer et al. Nature 2000, 403, 874). For a large liquid volume fraction in the gap, varphi > or = 0.75, the coalescence of columns causes a phase inversion, leading to the formation of air columns or cylindrical holes trapped in the liquid matrix (air-in-liquid dispersion). Locally ordered aligned patterns are formed by imposing a spatial variation of the electrostatic field by using a topographically patterned electrode. For example, multiple rows/lines of liquid columns are formed near the edge of a step-like heterogeneity of the electrode and annular rings of ordered columns or concentric ripples are formed around a heterogeneous circular patch. Simulations predict that the electrode pattern is replicated in the film only when the pattern periodicity, L(p), exceeds the instability length scale on the basis of the minimum interelectrode separation distance, L(p) > or = lambda(m)-d(min). Thus, the formation of secondary structures can be suppressed by employing an electrode with deep grooves and stronger field gradients, which produces almost ideal templating. The number density of the electric field induced patterns can be altered by tuning the mean film thickness (or the volume fraction of liquid in the gap), periodicity and depth (amplitude) of the grooves on the top electrode, and the applied voltage. The implications are in electrostatic lithography, pattern replication in soft materials, and the design and interpretation of thin film experiments involving electric fields.  相似文献   

11.
Stable free-standing liquid filaments formed by some layered mesophases of bent-core mesogens are unique structures. Some of their physical properties have been analyzed in recent studies, but their microscopic structure and conditions for stability have still been unclear. We explore details of filament shapes and surface profiles of filaments drawn in liquid crystal phases of bent-core mesogens by AFM and SEM measurements, and we present a microscopic structure model. Conclusions on the stabilizing mechanisms are drawn. Qualitative differences in mechanical properties are found for different mesophases, even though the macroscopic appearance of the filaments is very similar.  相似文献   

12.
Viologens, mono-molecularly immobilized in DNA grooves, show reversible colour changes without attenuation during potential switching after covering with ionic liquid type polymers.  相似文献   

13.
We employ grand canonical ensemble Monte Carlo simulations to investigate the impact of substrate curvature on the phase behavior of an adjacent fluid. The substrates consist of a periodic sequence of grooves in the x direction; the grooves are infinitely long in the y direction. The shape of the grooves is controlled by a parameter eta. For eta = 0 the substrates are planar. If eta = 1, the grooves are wedge shaped. If eta > 1 the grooves become concave and in the limit eta = infinity rectangular. The fluid-substrate potential representing a groove consists of two contributions, namely, that of the homogeneous substrate base corresponding to a semi-infinite solid and that of a finite piece of solid with nonplanar surfaces. Whereas the former contribution can be calculated analytically, the latter needs to be evaluated numerically. For very large values of eta, that is in (almost) rectangular grooves, we observe capillary condensation of that portion of fluid located inside the grooves. As eta decreases capillary condensation gives way to continuous filling. In all cases, a nearly planar film-gas interface eventually forms in the direction normal to the surface of the substrate base and outside the grooves if one increases the chemical potential sufficiently.  相似文献   

14.
Abstract

The alignment of nematic liquid crystals on micro-groove patterns was studied. It has been found that the order of the alignments is determined by the edge shape, spacing, and line pitch of the micro-groove patterns. On coarse patterns, with pitches greater than 2 μm, striped patterns of the liquid crystal alignment were observed using polarized light which manifested different orientations of the liquid crystals on the top, edge, and bottom of the grooves, respectively. On fine patterns, with pitches less than 2 μm, a uniform device-quality alignment has been realized, with which twisted nematic cells were constructed in combination with the rubbed alignment layer on the opposite substrate. Their viewing angle characteristics and tilt orientations of the director were also investigated.  相似文献   

15.
The alignment of nematic liquid crystals on micro-groove patterns was studied. It has been found that the order of the alignments is determined by the edge shape, spacing, and line pitch of the micro-groove patterns. On coarse patterns, with pitches greater than 2 μm, striped patterns of the liquid crystal alignment were observed using polarized light which manifested different orientations of the liquid crystals on the top, edge, and bottom of the grooves, respectively. On fine patterns, with pitches less than 2 μm, a uniform device-quality alignment has been realized, with which twisted nematic cells were constructed in combination with the rubbed alignment layer on the opposite substrate. Their viewing angle characteristics and tilt orientations of the director were also investigated.  相似文献   

16.
A number of 4'-substituted phenyl 4-(4'-cyano-4-oxybiphenyl)butanoates have been synthesized to study the effects of the -O-(CH2)3COO- inter-ring linkage on mesomorphic behaviour. Transition temperatures have been determined and are compared with those of the phenyl cyanobiphenylmethanoate analogues. In general, the butanoates exhibit lower melting points but in all cases, a lower nematic-isotropic transition is observed. An interesting feature of some members of the butanoate series is the presence of several reentrant mesophases. A unique phenomenon observed while studying the behaviour of one of the butanoates was the appearance of smectic filaments from the isotropic liquid on cooling. These filaments, through an unusual process, eventually form the typical smectic A texture. Formation of an SA phase from the isotropic liquid or the nematic phase in this fashion has not been reported previously.  相似文献   

17.
Liquid crystal phases formed from bent-core mesogens have attracted much interest of the liquid crystal research community, due to the manifestation of chirality effects from achiral molecules. One of the most elusive of the bent-core phases is the B7 phase, which at its early stage often forms in a helical filament fashion. We investigate the growth of such filaments in the presence of single-walled nanotubes to elucidate possible effects on the growth dynamics and helicity of B7 helical filaments. It is found that the filament width slightly decreases in comparison to the neat B7 material, suggesting a more tightly bound structure around the nanotubes, with the nanotubes likely acting as the core of the helical filament. No effects on pitch or periodicity of the helical superstructure is observed. The filament growth velocity quickly decreases as nanotubes are added to the B7 phase, indicating that a more tightly bound structure needs a longer time of formation. An observed buckling instability is of interest as a microscopic example for the study of nonlinear dynamics theories of filaments. The present investigation is thus of general importance for nanoparticle directed growth of filaments, which has applications in biomolecular growth and high tensile strength fibres.  相似文献   

18.
《Liquid crystals》2012,39(13-14):1937-1949
ABSTRACT

The structural support of plant cells is provided by the cell wall, which major load-bearing component is an array of hierarchical orientedhierarchical-oriented cellulose nano-, micro- and meso-structures of cellulose microfibrils. Cellulosic structures can respond to humidity changes by expanding or shrinking and this allows, for example, the dispersion of seeds. Previous studies have shown that nanorods, extracted from cell walls, can generate lyotropic liquid crystals that are at the origin of solid cholesteric-like arrangements. Not only photonic films, but also right and left helical filaments, anisotropic films with the ability to bend back and forth under the action of a moisture gradient at room temperature, are some of the materials that were produced from cellulose liquid crystal systems. This work is a review that focus on liquid crystalline-based structures obtained from cellulosic materials and how small perturbations on their structures affect significantly the response to external stimulus and interactions with the environment. Special emphasis is given to cholesteric-like organization of cellulose structures existing in plants, which are an inspiration for the production of the next generation of soft interactive materials.  相似文献   

19.
The effect of the surface energy gamma, disjoining pressure, Pi, and roughness on the dewetting of molecularly thin liquid lubricant films on magnetic disks, which have sub-nanometer surface topography, has been investigated by visualizing the dewetting process directly using ellipsometric microscopy. The dewetting process of thin liquids on the rough surface is determined not only by the well-known instability of films, which is determined by the sign of dPi/dh, but also by the sign of Pi and the surface topography of the substrate even if its roughness is of the sub-nanometer order. The dewetting film formed small droplets, which were not along the surface topography of the substrate, when Pi < 0. On the other hand, it formed grooves along the surface topography with a sub-nanometer roughness when Pi > 0. Moreover, the sub-nanometer roughness initiated the dewetting of the metastable liquid thin films.  相似文献   

20.
Geometrical optimization of helical flow in grooved micromixers   总被引:1,自引:0,他引:1  
Lynn NS  Dandy DS 《Lab on a chip》2007,7(5):580-587
Owing to the enhancement of surface effects at the micro-scale, patterned grooves on a micro-channel floor remain a powerful method to induce helical flows within a pressure driven system. Although there have been a number of numerical studies on geometrical effects concerning fluid mixing within the staggered herringbone mixer, all have focused mainly on the groove angle and depth, two factors that contribute greatly to the magnitude of helical flow. Here we present a new geometrical factor that significantly affects the generation of helical flow over patterned grooves. By varying the ratio of the length of the grooves to the neighboring ridges, helical flow can be optimized for a given groove depth and channel aspect ratio, with up to 50% increases in transverse flow possible. A thorough numerical study of over 700 cases details the magnitude of helical flow over unsymmetrical patterned grooves in a slanted groove micro-mixer, where the optimized parameters for the slanted groove mixer can be translated to the staggered herringbone mixer. The optimized groove geometries are shown to have a large dependence on the channel aspect ratio, the groove depth ratio, and the ridge length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号