首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intense photoluminescence at room temperature was observed in amorphous cadmium aluminum silicate doped with europium prepared by the sol-gel method. The structure of the 3CdO-Al2O3-3SiO2:Eu3+ system (CAS:Eu3+) has been determined by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The excitation and the emission spectra indicated that the red characteristic emission (611 nm) of CAS:Eu3+ under UV excitation due to 5D07F2 electric dipole transition is the strongest. Both XRD data and the emission ratio of (5D07F2)/(5D07F1) reveal that the Eu3+ is in a site without inversion symmetry. The maximum photoluminescence intensity has been obtained for 25 mol% concentration of Eu3+ in CAS, and the intensity enhancement and lifetime increase of Eu3+ with increasing sintering temperature were observed due to the less OH-content in the samples.  相似文献   

2.
C. Joshi  S.B. Rai 《Optics Communications》2011,284(19):4584-4587
Optical absorption and photoluminescent properties of Ho3+/Yb3+ co-doped tellurite and zinc tellurite glasses are investigated. The effect of zinc oxide as a modifier on the luminescence properties of above mentioned samples has been explored. Two intense upconversion emission bands centered at 546 (5F4 + 5S2 → 5I8) and 660 nm (5F5 → 5I8) are observed on excitation with 976 nm diode laser. Zinc oxide acts as a quencher for 976 nm excited upconversion emission. The up and downconversion emission spectra are recorded with 532 nm excitation source also. In this case zinc oxide improves the up and downconversion emissions. A large enhancement in upconversion intensity has been observed when Ho3+ ion is co-doped with Yb3+ ion. The dependence of upconversion intensities on excitation power and on temperature has also been studied. The power dependence study shows a quadratic dependence of the fluorescence intensity on the excitation power while a decrement in emission intensity of all the transitions at different rates with increase in temperature is observed in temperature dependence study. The possible mechanisms are also discussed in order to understand the upconversion and energy transfer processes.  相似文献   

3.
Absolute measurement for He-α resonance (1s2 1S0?1s2p1 P 1, at 40.2 Å) line emission from a laser-produced carbon plasma has been studied as a function of laser intensity. The optimum laser intensity is found to be ≈1.3×1012 W/cm2 for the maximum emission of 3.2 × 1013 photons sr?1 pulse?1. Since this line lies in the water window spectral region, it has potential application in x-ray microscopic imaging of biological sample in wet condition. Theoretical calculation using corona model for the emission of this line is also carried out with appropriate ionization and radiative recombination rate coefficients  相似文献   

4.
LnAl3(BO3)4:Eu3+ (Ln=Y, Gd) red phosphor particles were prepared by spray pyrolysis and the luminescent intensity under vacuum ultraviolet (VUV) excitation was investigated by changing Eu3+ content, Y/Gd molar ratio, and boron content. The concentration quenching for Eu3+ activator was observed at 5 at%. The highest luminescent intensity at 615 nm due to the 5D07F2 transitions of Eu3+ was achieved when the ratio of Gd to Y was 0.55. The R/O ratio (obtained by dividing the red emission intensity at 615 nm with the orange one at 592 nm), however, was not influenced by the G/Y ratio. Using excess boron, up to 135% of the stoichiometric quantity, improved the emission intensity of LnAl3(BO3)4:Eu3+ red phosphor. According to XRD analysis, the sample prepared using boron of a stoichiometric quantity had YBO3 phase as a minor phase. Such YBO3 phase progressively disappeared with an increase in the excess quantity of boron, which was responsible for the enhancement of emission intensity. In addition, the R/O ratio became larger and larger by increasing the excess content of boron due to a reduction in the symmetry of Y site. Consequently, both the emission intensity and the color coordinate of LnAl3(BO3)4:Eu3+ red phosphors were successfully optimized in terms of the Y/Gd ratio and the excess quantity of boron in spray pyrolysis.  相似文献   

5.
The r.f. discharge of sputtering silicon target using argon-oxygen-nitrogen plasma was investigated by optical emission spectroscopy. Electronic temperature (Te) and emission line intensity were measured for different plasma parameters: pressure (from 0.3 to 0.7 Pa), power density (0.6-5.7 W cm−2) and gas composition. At high oxygen concentration in the plasma, both Te and the target self-bias voltage (Vb) steeply decrease. Such behaviour traduces the target poisoning phenomenon. In order to control the deposition process, emission line intensity of different species present in the plasma were compared to the ArI (λ = 696.54 nm) line intensity and then correlated to the film composition analysed by Rutherford Backscattering Spectroscopy.  相似文献   

6.
The photoluminescence and excitation spectra of Pr3+ activated LiLaP4O12 has been investigated in the 10-300 K temperature region. At all temperatures, the luminescence consists of optical transitions emanating from both the Pr3+ 4f15d1 and the 1S0 states. However, at low temperatures the emission spectrum is dominated by the intraconfiguration emission transitions emanating from the Pr3+1S0 state. With increasing temperature, there is an exchange of intensity between the two emitting states; emission transitions from the 1S0 state exhibit strong intensity quenching while the 4f15d1→4f2 emission transitions reveal intensity gain. These results are explained on the basis of thermal population of the 4f15d1 state by the 1S0 state. The energy barrier of 0.05 eV (403 cm−1) for the nonradiative process is determined from the temperature dependence of the 1S0 lifetime.  相似文献   

7.
The spectroscopic characteristics and fluorescence dynamics for Yb3+/Ho3+:NaY(WO4)2 crystal were investigated. The parameters of oscillator strengths, the spontaneous transition probabilities, the fluorescence branching ratios, the radiative lifetimes and the stimulated emission cross sections have been calculated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The energy transfer efficiency from Yb3+ to Ho3+ was 65.85%. The green emission (530-570 nm) corresponding to (5F4, 5S2)→5I8 transition, red emission (640-670 nm) due to 5F55I8 transition and NIR emission (740-770 nm) attributed to (5F4, 5S2)→5I7 transition were observed on 974 nm excitation at room temperature. Under low pump power, the intensity of green light emission is weaker than that of the red light, while under high pump power, the case is on the contrary. The upconversion is based on the two-photon process either the energy transfer from Yb3+ ions or by the excited state absorption. The proposed mechanisms of upconversion emissions were provided.  相似文献   

8.
L.Y. Zhu 《Optics Communications》2008,281(9):2548-2551
Ni2+-doped ZrO2 precursor fibers were prepared via sol-gel technique by dry-spinning method and then heat-treated at different temperatures. The surface of the fibers is smooth with uniform diameter and no cracks have been observed by scanning electron microscopy (SEM). The emission intensity reaches a maximum value at 1 mol% Ni2+ because of the concentration quenching. The photoluminescence (PL) relative intensity is apparently intensifying with increasing temperature before 700 °C due to the crystallinity of the ZrO2 lattice improvement. The PL results show that the typical emission center is at 510 nm excited at 315 nm.  相似文献   

9.
In this paper, we studied the changes in the photoluminescence spectra of the Ar+ ion implanted mono-crystalline sapphire annealed at different atmospheres and different temperatures. Single crystals of sapphire (Al2O3) with the (1 0 1¯ 0) (m-samples) orientation were implanted at 623 K with 110 keV Ar+ ions to a fluence of 9.5×1016 ions/cm2. Photoluminescence measurement of the as-implanted sample shows a new emission band at 506 nm, which is attributed to the production of interstitial Al atoms. The intensity of emission band at 506 nm first increased then decreased with increase in annealing temperature. For the same annealing temperature, the intensity of PL peak at 506 nm of the sample annealed in air was higher than the sample annealed in vacuum. The experimental results show that the intensity of the PL peak at 506 nm of Ar-implanted sapphire can be enhanced by subsequent annealing with an enhancement of nearly 20 times. The influence of thermal annealing of the Ar-implanted samples on the new 506 nm emission band was discussed.  相似文献   

10.
The temperature dependence of the luminescence properties of nanocrystalline CdS/Mn2+ particles is investigated. In addition to an orange Mn2+ emission around 585 nm a red defect related emission around 700 nm is observed. The temperature quenching of both emissions is similar (Tq≈100 K). For the defect emission the reduction in the lifetime follows the temperature dependence of the intensity. For the Mn2+ emission however, the intensity decreases more rapidly than the lifetime with increasing temperature. To explain these observations a model is proposed in which the Mn2+ ions are excited via an intermediate state involving shallowly trapped (≈40 meV) charge carriers.  相似文献   

11.
A new phosphor in the Cl-F system doped with Dy, Ce and Eu has been reported. Characterization of this phosphor using XRD, PL and TL techniques is described. Polycrystalline Na6(SO4)2FCl:Dy; Na6(SO4)2FCl:Ce and Na6(SO4)2FCl:Eu phosphors prepared by a solid state diffusion method have been studied for their X-ray diffraction, photoluminescence (PL) and thermoluminescence (TL)characteristics. The PL excitation and emission spectra of phosphors were obtained. Dy3+ emission in the host at 475 and 570 nm is observed due to 4F9/26H15/2 and 4F9/26H13/2 transition, respectively, whereas the PL emission spectra of Na6(SO4)2FCl:Ce phosphor shows the Ce3+ emission at 322 nm due to 5d→4f transition of Ce3+ ion. In Na6(SO4)2FCl:Eu lattice, Eu2+ as well as Eu3+ emissions are observed. The emission of europium ion in this compound exhibits the blue as well as red emission. The TL glow curves of the same compounds have the simple structure with a prominent peak at 150, 175 and 200 °C. TL response, fading, reusability and trapping parameters of the phosphors are also studied. The TL glow curves of γ-irradiated Na6(SO4)2FCl sample show one glow peak indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak are calculated using Chen’s half width method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. The intensity of the TL glow peaks increases with increase of the added γ-ray dose to the samples.  相似文献   

12.
Nano-size YBO3:Eu3+ phosphor has been synthesized by the co-precipitation method. X-ray diffraction (XRD) pattern confirmed the formation of hexagonal vaterite-type structures of YBO3:Eu3+ nanoparticles. The transmission electron microscopy (TEM) study revealed the formation of spherical YBO3:Eu3+ nanoparticles with size 20-40 nm. The photoluminescence spectra revealed that the ratio of the red emission (5D0-7F2) to the orange emission (5D0-7F1) was much higher in the synthesized nano-size YBO3:Eu3+ phosphor. The improved relative intensity, i.e., higher R/O value of emission peaks, is due to a lower symmetry of crystal field around Eu3+ ions.  相似文献   

13.
The thermal characterization and spectroscopic properties of Er3+-doped 0.6GeO2-(0.4-x)PbO-xPbF2 glasses were investigated experimentally. With the replacement of PbO by PbF2 the thermal stability of glasses is improved and the infrared fluorescence intensity at 1530 nm is increased. The Judd-Ofelt intensity parameters, radiative transition rates, and fluorescence lifetimes of the excited 4I13/2 level of Er3+ ions were calculated from Judd-Ofelt theory. The asymmetric ligand field around Er3+ ions resulted from the incorporation of PbF2 into germanate glasses, broadens the infrared emission spectra at 1530 nm. Upconversion luminescence in the investigated glasses was observed at room temperature under the excitation of 976 nm laser diode. The glass 0.6GeO2-0.3PbO-0.1PbF2 exhibits the maximum upconversion emission intensity, while no frequency upconversion luminescence was observed in the 0.6GeO2-0.4PbO glass. The quadratic dependence of the green and red emissions on excitation power indicates that two-photon absorption contributes to the visible emission under the 976-nm excitation.  相似文献   

14.
Er3+-doped KCaY(VO4)2 microcrystalline samples were synthesized using a high temperature solid-state reaction technique. Spectroscopic properties of Er3+: KCaY(VO4)2 are studied and the nature of emissions is discussed. A strong green and infrared luminescence were observed under excitation at 314 nm in the O2−→V5+ charge-transfer transitions and direct excitation of Er3+ ions at 435 nm. A strong emission lines in the blue region are due to the transitions of VO43− ions have been observed at 77 K. The Judd-Ofelt parametrization scheme has been applied to the analysis of the room temperature absorption spectra in order to evaluate the intensity parameters, the branching ratios and the radiative lifetimes of the 4I13/2, 4I11/2, 4F9/2 and 4S3/2 emitting levels. The effective cross-section has been calculated for the 4I13/24I15/2 transition, indicating that the title compounds is a promising active medium for application in the three-level laser system. The up-conversion emission in Er3+: KCaY(VO4)2 was investigated at 300 K. The decay profiles of the Stokes and anti-Stokes emissions were measured and the mechanism of up-conversion luminescence is discussed.  相似文献   

15.
Drastic changes occur in the intensity pattern of the emission spectra of the 7n-levels as compared to the spectrum of the 00-level. These changes are due to greatly enhanced intensity of the sidebands in the progression of the 7-vibration. This enhancement is, in a first approximation, in agreement with calculations of the Franck-Condon factors of these transitions. The additional intensity of the sidebands in the emission from the 72-level can be explained in part by intensity borrowing from the 51-emission due to a coupling of the 72 and 51-levels. The large relative intensities of the 752, 753, and 773 emission bands remain unexplained.  相似文献   

16.
In this report the optical properties and energy-transfer frequency upconversion luminescence of Er3+/Yb3+-codoped laponite-derived powders under 975 nm infrared excitation is investigated. The 75%(laponite):25%(PbF2) samples doped with erbium and ytterbium ions, generated high intensity red emission around 660 nm and lower intensity green emission around 525, and 545 nm. The observed emission signals were examined as a function of the excitation power and annealing temperature. The results indicate that energy-transfer, and excited-state absorption are the major upconversion excitation mechanism for the erbium excited-state red emitting level. The precursor glass samples were also heat treated at annealing temperatures of 300 °C, 400 °C, 500 °C, and 600 °C, for a 2 h period. The dependence of the visible upconversion luminescence emission upon the annealing temperature indicated the existence of an optimum temperature which leads to the generation of the most intense and spectrally pure red emission signal.  相似文献   

17.
The Er3+ -Yb3+ codoped in Li2O content tungsten -tellurite (TWL) transparent glasses are synthesized and measured the absorption, Raman and upconversion luminescence (UPL) spectra. At room temperature intense green emission peak at 560 nm ( 4S3/24I15/2) and red emission peak at 670 nm ( 4F9/24I15/2) of Er3+ observed even at minimum 86 mW pumping power of infrared 980 nm excitation. For structure of the TWL glass, Raman spectrum result revealed that an important role of WO3 in the formation of glass network linkage with Li2O. Under this influence estimated lifetime of the 4I11/2 of Er3+ was 1.89 μs and due to lower phonon energy of the glass produce strong upconversion signal. The effect of Er2O3 concentration on emission intensity result indicated that green emission intensity initially increase in compare to red emission. Under the 980 nm pump power variation measured the relatively increases the red emission to the green emission intensity and analyze the possible upconversion mechanism and process.  相似文献   

18.
ZnS nanoparticles with Mn2+ doping (0.5-20%) have been prepared through a simple chemical method, namely the chemical precipitation method. The structure of the nanoparticles has been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectrometer. The size of the particles is found to be 3-5 nm range. Photoluminescence spectra were recorded for undoped ZnS nanoparticles using an excitation wavelength of 320 nm, exhibiting an emission peak centered at around 445 nm. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+4T1-6A1 transition is observed along with the blue emission. The prepared Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission 580 nm with the blue emission suppressed. The maximum PL intensity is observed only at the excitation energy of 3.88 eV (320 nm). Increase in stabilizing time up to 48 h in de-ionized water yields the enhancement of emission intensity of doped (4% Mn2+) ZnS. The correlation made through the concentration of Mn2+ versus PL intensity resulted in opposite trend (mirror image) of blue and yellow emissions.  相似文献   

19.
Photoluminescence(PL) characterization is carried out on CsBr1-xClx:Euy2+ (x = 0.05, 0.1, 0.2, 0.3 y = 100 ppm, 200 ppm) crystals grown in vacuum with the Bridgman technique. PL studies show an increase in luminescence intensity with a decrease in bromide ion content. F(Br) and F(Cl) centers are formed due to -ray irradiation at room temperature. Photostimulated luminescence (PSL) emission is found to increase with an increase in irradiation dose from 7.5 Gy to 30 Gy at room temperature. From the results it is demonstrated that out of the different compositions studied, CsBr0.9Cl0.1:Eu2+ (200 ppm) phosphor has a linear PSL response with respect to irradiation dose.  相似文献   

20.
Eu3+-doped gadolinium orthophosphate (GdPO4) (Eu3+ at%=0, 2, 5, 7, 10, 15, 20 and 30) nanoparticles have been prepared by ethylene glycol route and subsequently heated at 500 and 900 °C. The crystallite size increases with increasing heat-treatment temperature. Luminescence study shows that magnetic dipole transition (5D07F1) is prominent over the electric dipole transition (5D07F2), which has been attributed to occupancy of inversion symmetry site by more Eu3+ ions in Eu3+-doped GdPO4. The luminescence intensity is enhanced as heat-treatment temperature increases from 500 to 900 °C due to the improved crystallinity. Optimum luminescence is observed for 5–7 at% Eu3+ in GdPO4 nanoparticles. Above this concentration, luminescence intensity decreases due to concentration quenching effect. This is supported by lifetime study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号