首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Let {X(t): t [a, b]} be a Gaussian process with mean μ L2[a, b] and continuous covariance K(s, t). When estimating μ under the loss ∫ab ( (t)−μ(t))2 dt the natural estimator X is admissible if K is unknown. If K is known, X is minimax with risk ∫ab K(t, t) dt and admissible if and only if the three by three matrix whose entries are K(ti, tj) has a determinant which vanishes identically in ti [a, b], i = 1, 2, 3.  相似文献   

2.
Let F(s, t) = P(X > s, Y > t) be the bivariate survival function which is subject to random censoring. Let be the bivariate product limit estimator (PL-estimator) by Campbell and Földes (1982, Proceedings International Colloquium on Non-parametric Statistical Inference, Budapest 1980, North-Holland, Amsterdam). In this paper, it was shown that
, where {ζi(s, t)} is i.i.d. mean zero process and Rn(s, t) is of the order O((n−1log n)3/4) a.s. uniformly on compact sets. Weak convergence of the process {n−1 Σi = 1n ζi(s, t)} to a two-dimensional-time Gaussian process is shown. The covariance structure of the limiting Gaussian process is also given. Corresponding results are also derived for the bootstrap estimators. The result can be extended to the multivariate cases and are extensions of the univariate case of Lo and Singh (1986, Probab. Theory Relat. Fields, 71, 455–465). The estimator is also modified so that the modified estimator is closer to the true survival function than in supnorm.  相似文献   

3.
Gini, Lehmer, Beckenbach, and others studied the meanG s (a, b) = (a s +b s )/(a s 1 +b s-1 ) We proveTheorem 1 The identity (ina, b)G s (G t ,G u ) =G v holds if and only if (s, t, u, v) is (s, t, t, t) (the trivial solution) or one of (1, 1 –k, 1 +k, 1), (1/2, 1 –k, k, 1/2), or (0,–k, k, 0) (the exotic solutions,k is any real number)Theorem 2 IfP s (a, b) is the power mean [(a s +b s )/2]1/s , thenP s (P t ,P u ) =P v has only the trivial solution (s, t, u, v) = (s, t, t, t) and the exotic solution (0,t, –t, 0) The family of meansG s (respP s ) includes the classical arithmetic, geometric, and harmonic means  相似文献   

4.
The behavior of the posterior for a large observation is considered. Two basic situations are discussed; location vectors and natural parameters.Let X = (X1, X2, …, Xn) be an observation from a multivariate exponential distribution with that natural parameter Θ = (Θ1, Θ2, …, Θn). Let θx* be the posterior mode. Sufficient conditions are presented for the distribution of Θ − θx* given X = x to converge to a multivariate normal with mean vector 0 as |x| tends to infinity. These same conditions imply that E(Θ | X = x) − θx* converges to the zero vector as |x| tends to infinity.The posterior for an observation X = (X1, X2, …, Xn is considered for a location vector Θ = (Θ1, Θ2, …, Θn) as x gets large along a path, γ, in Rn. Sufficient conditions are given for the distribution of γ(t) − Θ given X = γ(t) to converge in law as t → ∞. Slightly stronger conditions ensure that γ(t) − E(Θ | X = γ(t)) converges to the mean of the limiting distribution.These basic results about the posterior mean are extended to cover other estimators. Loss functions which are convex functions of absolute error are considered. Let δ be a Bayes estimator for a loss function of this type. Generally, if the distribution of Θ − E(Θ | X = γ(t)) given X = γ(t) converges in law to a symmetric distribution as t → ∞, it is shown that δ(γ(t)) − E(Θ | X = γ(t)) → 0 as t → ∞.  相似文献   

5.
Let I be a finite interval, r and ρ(t)=dist{t, ∂I}, tI. Denote by Δs+Wrpα, 0α<∞, the class of functions x on I with the seminorm x(r)ραLp1 for which Δsτx, τ>0, is nonnegative on I. We obtain two-sided estimates of the Kolmogorov widths dn(Δs+Wrpα)Lq and of the linear widths dn(Δs+Wrpα)linLq, s=0, 1, …, r+1.  相似文献   

6.
In this paper a form of the Lindeberg condition appropriate for martingale differences is used to obtain asymptotic normality of statistics for regression and autoregression. The regression model is yt = Bzt + vt. The unobserved error sequence {vt} is a sequence of martingale differences with conditional covariance matrices {Σt} and satisfying supt=1,…, n {v′tvtI(v′tvt>a) |zt, vt−1, zt−1, …} 0 as a → ∞. The sample covariance of the independent variables z1, …, zn, is assumed to have a probability limit M, constant and nonsingular; maxt=1,…,nz′tzt/n 0. If (1/nt=1nΣt Σ, constant, then √nvec( nB) N(0,M−1Σ) and n Σ. The autoregression model is xt = Bxt − 1 + vt with the maximum absolute value of the characteristic roots of B less than one, the above conditions on {vt}, and (1/nt=max(r,s)+1tvt−1−rv′t−1−s) δrs(ΣΣ), where δrs is the Kronecker delta. Then √nvec( nB) N(0,Γ−1Σ), where Γ = Σs = 0BsΣ(B′)s.  相似文献   

7.
Systems of linear nonautonomous delay differential equations are considered which are of the form yi(t) = ∑k = 1n0T bik(t, s) yk(ts) dηik(s) − ci(t) yi(t), where I = 1,…, n. Sufficient conditions are derived for both the asymptotic stability and the instability of the zero solution. The main result is found by a monotone technique using elementary methods only. Moreover, additional criteria are obtained by using the method of Lyapunov functionals.  相似文献   

8.
We prove existence and uniqueness of the solution Xεt of the SDE, Xεt = εBt + ∫t0uq −1 ε(s, Xεt) ds, where Xεt is a one-dimensional process and uε(t, x) the density of Xεt (ε > 0, q > 1). We show that the closure of (Xεt; 0 ≤ t ≤ 1) with respect to Hölder norm, when ε goes to 0, is a.s. equal to an explicit family of continuous functions. We obtain similar results, considering SDE′s where the drift coefficient is equal to ± sgn(x) u(t, x).  相似文献   

9.
We study the error in approximating functions with a bounded (r + α)th derivative in an Lp-norm. Here r is a nonnegative integer, α ε [0, 1), and ƒ(r + α) is the classical fractional derivative, i.e., ƒ(r + α)(y) = ∝01, α d(r)(t)). We prove that, for any such function ƒ, there exists a piecewise-polynomial of degree s that interpolates ƒ at n equally spaced points and that approximates ƒ with an error (in sup-norm) ƒ(r + α)p O(n−(r+α−1/p). We also prove that no algorithm based on n function and/or derivative values of ƒ has the error equal ƒ(r + α)p O(n−(r+α−1/p) for any ƒ. This implies the optimality of piecewise-polynomial interpolation. These two results generalize well-known results on approximating functions with bounded rth derivative (α = 0). We stress that the piecewise-polynomial approximation does not depend on α nor on p. It does not depend on the exact value of r as well; what matters is an upper bound s on r, s r. Hence, even without knowing the actual regularity (r, α, and p) of ƒ, we can approximate the function ƒ with an error equal (modulo a constant) to the minimal worst case error when the regularity were known.  相似文献   

10.
Let the space of continuous functions on [0, 1] which vanish at 0 be denoted by C. It will be shown that for any complete orthonormal set of functions {αi(s)} of bounded variation and such that αi(1) = 0, there is a simply described linear combination of the continuous functions {∝0tαi(s) ds} which converges uniformly to x(t) for almost all x ε C (“almost all” in the sense of Wiener measure).  相似文献   

11.
Let d≥3. Let H be a d+1-dimensional vector space over GF(2) and {e0,…,ed} be a specified basis of H. We define Supp(t){et1,…,etl}, a subset of a specified base for a non-zero vector t=et1++etl of H, and Supp(0)0/. We also define J(t)Supp(t) if |Supp(t)| is odd, and J(t)Supp(t){0} if |Supp(t)| is even.For s,tH, let {a(s,t)} be elements of H(HH) which satisfy the following conditions: (1) a(s,s)=(0,0), (2) a(s,t)=a(t,s), (3) a(s,t)≠(0,0) if st, (4) a(s,t)=a(s,t) if and only if {s,t}={s,t}, (5) {a(s,t)|tH} is a vector space over GF(2), (6) {a(s,t)|s,tH} generate H(HH). Then, it is known that S{X(s)|sH}, where X(s){a(s,t)|tH{s}}, is a dual hyperoval in PG(d(d+3)/2,2)=(H(HH)){(0,0)}.In this note, we assume that, for s,tH, there exists some xs,t in GF(2) such that a(s,t) satisfies the following equation: Then, we prove that the dual hyperoval constructed by {a(s,t)} is isomorphic to either the Huybrechts’ dual hyperoval, or the Buratti and Del Fra’s dual hyperoval.  相似文献   

12.
In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ)(t)=f(t,y(t),y(β1)(t),y(β2)(t),…,y(βn)(t)) with μ>βn>βn-1>…>β1>0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.  相似文献   

13.
In this piece of work, we introduce a new idea and obtain stability interval for explicit difference schemes of O(k2+h2) for one, two and three space dimensional second-order hyperbolic equations utt=a(x,t)uxx+α(x,t)ux-2η2(x,t)u,utt=a(x,y,t)uxx+b(x,y,t)uyy+α(x,y,t)ux+β(x,y,t)uy-2η2(x,y,t)u, and utt=a(x,y,z,t)uxx+b(x,y,z,t)uyy+c(x,y,z,t)uzz+α(x,y,z,t)ux+β(x,y,z,t)uy+γ(x,y,z,t)uz-2η2(x,y,z,t)u,0<x,y,z<1,t>0 subject to appropriate initial and Dirichlet boundary conditions, where h>0 and k>0 are grid sizes in space and time coordinates, respectively. A new idea is also introduced to obtain explicit difference schemes of O(k2) in order to obtain numerical solution of u at first time step in a different manner.  相似文献   

14.
Some oscillation criteria are established by the averaging technique for the second order neutral delay differential equation of Emden-Fowler type (a(t)x¢(t))¢+q1(t)| y(t-s1)|a sgn y(t-s1) +q2(t)| y(t-s2)|b sgn y(t-s2)=0,    t 3 t0,(a(t)x'(t))'+q_1(t)| y(t-\sigma_1)|^{\alpha}\,{\rm sgn}\,y(t-\sigma_1) +q_2(t)| y(t-\sigma_2)|^{\beta}\,{\rm sgn}\,y(t-\sigma_2)=0,\quad t \ge t_0, where x(t) = y(t) + p(t)y(t − τ), τ, σ1 and σ2 are nonnegative constants, α > 0, β > 0, and a, p, q 1, q2 ? C([t0, ¥), \Bbb R)q_2\in C([t_0, \infty), {\Bbb R}) . The results of this paper extend and improve some known results. In particular, two interesting examples that point out the importance of our theorems are also included.  相似文献   

15.
Let ℛ n (t) denote the set of all reducible polynomials p(X) over ℤ with degree n ≥ 2 and height ≤ t. We determine the true order of magnitude of the cardinality |ℛ n (t)| of the set ℛ n (t) by showing that, as t → ∞, t 2 log t ≪ |ℛ2(t)| ≪ t 2 log t and t n ≪ |ℛ n (t)| ≪ t n for every fixed n ≥ 3. Further, for 1 < n/2 < k < n fixed let ℛ k,n (t) ⊂ ℛ n (t) such that p(X) ∈ ℛ k,n (t) if and only if p(X) has an irreducible factor in ℤ[X] of degree k. Then, as t → ∞, we always have t k+1 ≪ |ℛ k,n (t)| ≪ t k+1 and hence |ℛ n−1,n (t)| ≫ |ℛ n (t)| so that ℛ n−1,n (t) is the dominating subclass of ℛ n (t) since we can show that |ℛ n (t)∖ℛ n−1,n (t)| ≪ t n−1(log t)2.On the contrary, if R n s (t) is the total number of all polynomials in ℛ n (t) which split completely into linear factors over ℤ, then t 2(log t) n−1R n s (t) ≪ t 2 (log t) n−1 (t → ∞) for every fixed n ≥ 2.   相似文献   

16.
The wave equation for Dunkl operators   总被引:1,自引:0,他引:1  
Let k = (kα)αε, be a positive-real valued multiplicity function related to a root system , and Δk be the Dunkl-Laplacian operator. For (x, t) ε N, × , denote by uk(x, t) the solution to the deformed wave equation Δkuk,(x, t) = δttuk(x, t), where the initial data belong to the Schwartz space on N. We prove that for k 0 and N l, the wave equation satisfies a weak Huygens' principle, while a strict Huygens' principle holds if and only if (N − 3)/2 + Σαε+kα ε . Here + is a subsystem of positive roots. As a particular case, if the initial data are supported in a closed ball of radius R > 0 about the origin, the strict Huygens principle implies that the support of uk(x, t) is contained in the conical shell {(x, t), ε N × | |t| − R x |t| + R}. Our approach uses the representation theory of the group SL(2, ), and Paley-Wiener theory for the Dunkl transform. Also, we show that the (t-independent) energy functional of uk is, for large |t|, partitioned into equal potential and kinetic parts.  相似文献   

17.
The subspaces Gα, Gβ, and Gβα (α, β ≥ 0)of Schwartz′ space S+ in (0, + ∞) are associated with the Hankel transform in the same way as the Gel′fand-Shilov spaces Sα, Sβ, and Sβα are associated with the Fourier transform. Indeed, if we consider the Hankel transform Hγ (γ < −1) defined by γ(ƒ)(t) = ∫0 (xt)−γ/2xγJγ([formula]) ƒ(x) dx then γ is an isomorphism from Gα, Gβ, and Gβα onto Gα, Gβ, and Gαβ respectively. So. the spaces Gαα are invariant for γ. In this paper, we characterize the spaces Gαα (α > 1) in terms of their Fourier-Laguerre coefficients. Also, we characterize the range of the Fourier-Laplace operator D defined by D(ƒ)(w) = ∫0 ƒ(t) e−(1/2)((1 + w)/(1 − w))t for w D = {w : |w| ≤ 1} when it acts on the space Gαα.  相似文献   

18.
If E is an ordered set, we study the processes Yt, t E, for which the vectorial spaces t generated by all the conditional expectations E(Ysβ t) for st have finite dimensions d(t) ≤ N. ( t is some convenient filtration.) We first develop a geometrical approach in the general situation and give a “Goursat's representation” Yt = Σfi(t)Mi(t), where the Mi(t) are martingales. We then restrict us to the cases E = or E = 2 and give representations of the processes by the mean of stochastic integrals of “Goursat's kernels.” The special case when Yt is the solution of a differential equation is considered.  相似文献   

19.
Let B be a real separable Banach space with norm |ß|B, X, X1, X2, … be a sequence of centered independent identically distributed random variables taking values in B. Let sn = sn(t), 0 ≤ t ≤ 1 be the random broken line such that sn(0) = 0, sn(k/n) = n−1/2 Σi=1k Xi for n = 1, 2, … and k = 1, …, n. Denote |sn|B = sup0 ≤ t ≤ 1 |sn(t)|B and assume that w(t), 0 ≤ t ≤ 1 is the Wiener process such that covariances of w(1) and X are equal. We show that under appropriate conditions P(|sn|B > r) = P(|w|B > r)(1 + o(1)) and give estimates of the remainder term. The results are new already in the case of B having finite dimension.  相似文献   

20.
Let ga(t) and gb(t) be two positive, strictly convex and continuously differentiable functions on an interval (a, b) (−∞ a < b ∞), and let {Ln} be a sequence of linear positive operators, each with domain containing 1, t, ga(t), and gb(t). If Ln(ƒ; x) converges to ƒ(x) uniformly on a compact subset of (a, b) for the test functions ƒ(t) = 1, t, ga(t), gb(t), then so does every ƒ ε C(a, b) satisfying ƒ(t) = O(ga(t)) (ta+) and ƒ(t) = O(gb(t)) (tb). We estimate the convergence rate of Lnƒ in terms of the rates for the test functions and the moduli of continuity of ƒ and ƒ′.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号