共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural convection heat transfer in inclined rectangular enclosures with perfectly conducting fins attached to the heated wall is numerically studied. The parameters governing this problem are the Rayleigh number (102≤Ra≤2×105), the aspect ratio of the enclosures (2.5≤A=H′/L′≤∞), the dimensionless lengths of the partitions (0≤B=?′/L′≤1), the aspect ratio of micro-cavities (A≤C=h′/L′≤0.33), the inclination angle (0≤φ≤60°) and the Prandtl number (Pr=0.72). The results indicate that the heat transfer through the cover is considerably affected by the presence of the fins. At low Rayleigh numbers, the heat transfer regime is dominated by conduction. When B≈0.75 and C≈0.33, the heat transfer through the cold wall decreases considerably. This trend is enhanced when the enclosure is inclined. Useful engineering correlations are derived for practical applications. 相似文献
2.
3.
4.
Laminar natural convection has been studied in enclosures bounded by a solid wall with its outer boundary at constant temperature while the opposing side has a constant heat flux. Two-dimensional equations of conservation of mass, momentum and energy, with the Boussinesq approximation are solved using a finite difference method. The numerical procedure adopted is based on the SIMPLER algorithm. Various parameters were: Rayleigh number (from 103 to 106), dimensionless conductivity of bounding wall (from 1 to 10) and dimensionless wall width (from 0.15 to 0.5), aspect ratio (from 0.5 to 1) and the inclination angle (from 30° to 180°). The results are reduced in terms of the normalized Nusselt number as a function of the Rayleigh number, and other dimensionless parameters. The isotherms and streamlines are produced for various Rayleigh numbers and geometrical conditions. It is found that the heat transfer is an increasing function of the Rayleigh number, wall to fluid conductivity ratio, enclosure aspect ratio and a decreasing function of the wall thickness. It passes from a maximum for the inclination angle of about 80°. 相似文献
5.
Laminar natural convection and conduction in shallow enclosures having multiple partitions with finite thickness and conductivity have been studied. An approximate analytical solution is obtained by using the parallel flow approximation in horizontal shallow enclosures heated isothermally at two vertical ends while adiabatic on horizontal end walls. The same problem is solved also using a finite difference formulation and the control volume method. The study covers the range ofRa from 105 to 107,A=H/L0.2, C=1/L from 0 to 0.15, and the thermal conductivity ratio of partition to fluidk
r
from 10–4 to 1011. The partition numberN was varied from 0 to 5. The Prandtl number was 0.72 (for air). The results are reduced in terms ofNu as a function ofRa, k, and various geometrical parameters (A, C). The streamlines and isotherms are produced to visualize the flow and temperature fields.Es wird der kombinierte Einfluß von laminarer Naturkonvektion und Leitung in flachen Behältern mit mehreren Trennwänden endlicher Dicke und Leitfähigkeit untersucht. Eine analytische Näherungslösung läßt sich über die Parallelstromapproximation bezüglich horizontaler flacher Behälter finden, deren zwei vertikale Begrenzungswände isotherm beheizt sind, während die Horizontalflächen adiabat sein sollen. Das selbe Problem wird unter Verwendung eines Differenzverfahrens und der Kontrollvolumen-Methode gelöst und zwar für die Parameterbereiche 105 Ra 107;A=H/L<0.2;>0.2;>C=1/L 0.15; 10–4kr 1011, wobei der letzte Parameter das Verhältnis der Leitfähigkeit von Trennwand und Fluid bezeichnet. Die Zahl der TrennwändeN variierte Zwischen 0 und 5, die Prandtl-Zahl betrug 0.72 (Luft). Die Ergebnisse werden in dimensionsloser Form gemäß der BeziehungNu =f (Ra, k
r
,A, C) mitgeteilt bzw. durch Diagrammdarstellungen der Stromlinien- und Isothermenfelder veranschaulicht.Financial support from the Natural Sciences and Engineering Council Canada is acknowledged. Financial support to A. Kangni from Canadian Fellowship Program For French Speaking Countries is also acknowledged. 相似文献
6.
Cubic spline collection numerical method has been developed to determine two dimensional natural convection in a partitioned enclosure heated from below. The both sides of impermeable partition are considered to have continuity in heat flux and temperatures. The governing equations are solved with aid of the SADI procedure. Parametric studies of the effects of the partition and Rayleigh number on the fluid flow and temperature fields have been performed. Results show that the location of the partition and Rayleigh number have a significant influence on the flow and heat transfer characteristics.
Nomenclature A aspect ratio=L/H - g gravitational acceleration - H enclosure height - H1 distance between the top wall of enclosure and the partition - H2 distance between the bottom wall of enclosure and the partition - k thermal conductivity of fluid - L enclosure length - m number of vertical grid lines - n number of horizontal grid lines - Nu Nusselt number - P pressure - Pr Prandtl number - Q heat transfer across enclosure - Ra Rayleigh number based onH - t time - T dimensional temperature - T H temperature of warm horizontal wall - T L temperature of cold horizontal wall - T 0 average temperature=T(H+TL)/2 - T temperature difference between the hot and cold wall =T H–TL - u, U dimensional and dimensionless horizontal velocity - , V dimensional and dimensionless vertical velocity - x, X dimensional and dimensionless horizontal coordinate - y, Y dimensional and dimensionless vertical coordinate - fluid thermal diffusivity - coefficient of thermal expansion - viscosity - kinematic viscosity=/g9 - density - , dimensional and dimensionless stream function - dimensionless temperature - , dimensional and dimensionless vorticity - dimensionless time 相似文献
Freie Konvektion in einem von unten beheizten, unterteiltem Hohlraum
Zusammenfassung Eine numerische dreidimensionale SplineMethode zur Berechnung der zweidimensionalen Naturkonvektion in einem von unten beheizten, unterteiltem Hohlraum wird vorgestellt. Der Wärmestrom und die Temperatur auf beiden Seiten der undurchlässigen Trennwand werden als konstant betrachtet. Mit Hilfe der SADI-Prozedur werden die beschreibenden Gleichungen gelöst. Über den Einfluß der Unterteilung und der Rayleigh-Zahl auf die Strömung des Fluids und das Temperaturfeld wird eine Parameter-Studie durchgeführt. Die Ergebnisse zeigen, daß die Anordnung der Unterteilung und die Rayleigh-Zahl einen entscheidenden Einfluß auf das Wärmeübertragungsverhalten haben.
Nomenclature A aspect ratio=L/H - g gravitational acceleration - H enclosure height - H1 distance between the top wall of enclosure and the partition - H2 distance between the bottom wall of enclosure and the partition - k thermal conductivity of fluid - L enclosure length - m number of vertical grid lines - n number of horizontal grid lines - Nu Nusselt number - P pressure - Pr Prandtl number - Q heat transfer across enclosure - Ra Rayleigh number based onH - t time - T dimensional temperature - T H temperature of warm horizontal wall - T L temperature of cold horizontal wall - T 0 average temperature=T(H+TL)/2 - T temperature difference between the hot and cold wall =T H–TL - u, U dimensional and dimensionless horizontal velocity - , V dimensional and dimensionless vertical velocity - x, X dimensional and dimensionless horizontal coordinate - y, Y dimensional and dimensionless vertical coordinate - fluid thermal diffusivity - coefficient of thermal expansion - viscosity - kinematic viscosity=/g9 - density - , dimensional and dimensionless stream function - dimensionless temperature - , dimensional and dimensionless vorticity - dimensionless time 相似文献
7.
The two-dimensional, steady, laminar natural convection phenomena in partitioned enclosure of solar collector has been studied numerically. Heat conduction along the partition is considered. An iterative finite-difference scheme is employed to solve the governing equations in the flow field. The effects of Rayleigh number, thermal conductivity ratio, partition angle, tilt angle, and aspect ratio on both the local and average heat transfer coefficients of the solar collector have been discussed. The range of Rayleigh number tested was up to 5 × 104, the thermal conductivity ratio of 4.5 and 30, partition angle from 10 deg to 170 deg, tilt angle from 10 deg to 90 deg, and aspect ratio varied between 0.2 and 10. The results indicate that the convective heat transfer is strongly affected with the aspect ratio of the enclosures.
Nomenclature a slope of the partition with respect to the horizontal - A H/L=cell aspect ratio - A w t/L=wall aspect ratio - g acceleration due to gravity - h local heat transfer coefficient - average heat transfer coefficient - H cell length - k thermal conductivity of fluid within the cell - k w thermal conductivity of the cell wall - L plate spacing - Nu f h L/k=local cell Nusselt number - L/k=average cell Nusselt number - overall average Nusselt number - qL/k w t(T h–T c)=average wall Nusselt number - Pr /=Prandtl number - q heat transfer in the cell wall from the hot to cold plate per unit depth - Ra g L 3 T/=Rayleigh number - R k k w/k=ratio of wall thermal conductivity to that of the fluid - t thickness of cell wall - T c cold plate temperature - T f temperature in cell - T h hot plate temperature - T w temperature in cell wall - u, U dimension and dimensionless velocities inx-direction - v, V dimension and dimensionless velocities iny-direction - x distance measured from the bottom of the cell (Fig. 1) - X x/L=normalized distance ofx - y distance measured from hot plate (Fig. 1) - Y y/L=normalized distance ofy - x 1 distance measured in wall (Fig. 1) - X 1 x/L=normalized distance ofx 1 Greek symbols thermal diffusivity of fluid - coefficient of volumetric expansion of fluid - partition angle with respect to the hot plate - f T f–T c/T h–T c=dimensionless temperature in cell - w T w–T c/T h–T c=dimensionless temperature in cell wall - kinematic viscosity of fluid - enclosure tilt angle from horizontal - dimensional vorticity - L 2/=dimensionless vorticity - dimensionless streamline 相似文献
Freie Konvektion in unterteilten Kammern von Solarkollektoren
Zusammenfassung Die zweidimensionale, stetige, laminare freie Konvektion in unterteilten Kammern von Solarkollektoren wurde numerisch untersucht. Die Wärmeübertragung entlang dieser Kammern wurde betrachtet. Ein iteratives Finite-Differenzen-Schema wurde angewandt um die Gleichungen, welche das Strömungsfeld beschreiben, zu lösen. Der Einfluß der Rayleigh-Zahl, der thermische Leitfähigkeit, des Kammerwinkels, des Neigungswinkels und der Längenverhältnisse auf die örtlichen und durchschnittlichen Wärmeübertragungskoeffizienten des Solarkollektors wurde diskutiert. Der Bereich der Rayleigh-Zahl erstreckte sich bis zu 5 × 104, das Verhältnis der thermischen Leitfähigkeit betrug 4.5 und 30, der Kammerwinkel lag zwischen 10° und 170°, der Neigungswinkel zwischen 10° und 90° und das Längenverhältnis variierte zwischen 0.2 und 10. Die Ergebnisse beinhalten, daß die konvektive Wärmeübertragung sehr stark durch das Längenverhältnis der Kammern beeinflußt wird.
Nomenclature a slope of the partition with respect to the horizontal - A H/L=cell aspect ratio - A w t/L=wall aspect ratio - g acceleration due to gravity - h local heat transfer coefficient - average heat transfer coefficient - H cell length - k thermal conductivity of fluid within the cell - k w thermal conductivity of the cell wall - L plate spacing - Nu f h L/k=local cell Nusselt number - L/k=average cell Nusselt number - overall average Nusselt number - qL/k w t(T h–T c)=average wall Nusselt number - Pr /=Prandtl number - q heat transfer in the cell wall from the hot to cold plate per unit depth - Ra g L 3 T/=Rayleigh number - R k k w/k=ratio of wall thermal conductivity to that of the fluid - t thickness of cell wall - T c cold plate temperature - T f temperature in cell - T h hot plate temperature - T w temperature in cell wall - u, U dimension and dimensionless velocities inx-direction - v, V dimension and dimensionless velocities iny-direction - x distance measured from the bottom of the cell (Fig. 1) - X x/L=normalized distance ofx - y distance measured from hot plate (Fig. 1) - Y y/L=normalized distance ofy - x 1 distance measured in wall (Fig. 1) - X 1 x/L=normalized distance ofx 1 Greek symbols thermal diffusivity of fluid - coefficient of volumetric expansion of fluid - partition angle with respect to the hot plate - f T f–T c/T h–T c=dimensionless temperature in cell - w T w–T c/T h–T c=dimensionless temperature in cell wall - kinematic viscosity of fluid - enclosure tilt angle from horizontal - dimensional vorticity - L 2/=dimensionless vorticity - dimensionless streamline 相似文献
8.
A closed-form model for the computation of heat transfer rates through the rectangular-partitioned enclosures is investigated. The rectangular-partitioned enclosures may contain solid or gas with or without a constant and uniformly distributed heat generation. The conduction in the enclosures is considered as two-dimensional, whereas one-dimensional heat transfer through the fin-type partition is assumed. Dimensionless heat flux plots are parametrically studied by varying the aspect ratio (L/H) of the enclosure, the ratio of thermal conductivities of the enclosure to the fin-type partition (k a /k f ), the Biot number (β a =h a L/k a ), and the reduced partition thickness (t */L). It is demonstrated through an example problem that there is a large error in using one-dimensional analysis, particularly at lower values of k a /k f , and β a . 相似文献
9.
Steady two-dimensional natural convection in fluid filled cavities is numerically investigated. The channel is heated from
below and cooled from the top with insulated side walls and the inclination angle is varied. The field equations for a Newtonian
Boussinesq fluid are solved numerically for three cavity height based Rayleigh numbers, Ra = 104, 105 and 106, and several aspect ratios. The calculations are in excellent agreement with previously published benchmark results. The
effect of the inclination of the cavity to the horizontal with the angle varying from 0° to 180° and the effect of the startup
conditions on the flow pattern, temperature distribution and the heat transfer rates have been investigated. Flow admits different
configurations at different angles as the angle of inclination is increased depending on the initial conditions. Regardless
of the initial conditions Nusselt number Nu exhibits discontinuities triggered by gradual transition from multiple cell to a single cell configuration. The critical
angle of inclination at which the discontinuity occurs is strongly influenced by the assumed startup field. The hysteresis
effect previously reported is not always present when the calculations are reversed from 90° to 0°. A comprehensive study
of the flow structure, the Nu variation with varying angle of inclination, the effect of the initial conditions and the hysteresis effect are presented. 相似文献
10.
Nuri Yücel 《Heat and Mass Transfer》1994,29(8):471-477
The flow and heat transfer in partially heated and partially cooled cavities were numerically analyzed. Using the control volume approach, a computer program based on SIMPLE algorithm was developed. A square enclosure with variable size heater and cooler on the vertical walls was considered. Computations were carried out to investigate the effects of heater and cooler size on the heat transfer rate. It was observed that for a given cooler size, the mean Nusselt number decreases with increasing heater size. On the other hand, for a given heater size, the mean Nusselt number increases with increasing cooler size. For all Rayleigh numbers considered, the same behavior was observed.
Nomenclature g gravitational acceleration - H height of cavity - k thermal conductivity of fluid - l C cooler size - l H heater size - mean Nusselt number - Nu y local Nusselt number - P pressure - Pr Prandtl number - Ra Rayleigh number (Ra = gH 3(T H –T C)/()) - T temperature - T C temperature of cold surface - T H temperature of hot surface - T R reference temperature (T R = (T C +T H)/2) - u velocity component inx-direction - x horizontal axis - v velocity component iny-direction - y vertical axis Greek symbols thermal diffusivity - thermal expansion coefficient - density of fluid - stream function - kinematic viscosity 相似文献
Natürliche Konvektion in geschlossenen Räumen mit partieller Heizung und Kühlung der Wände
Zusammenfassung Es wurde ein numerisches Modell zur Analyse des Strömungs- und Wärmeübergangsverhaltens in teilweise beheizten und gekühlten Hohlräumen entwickelt und unter Verwendung des Kontrollvolumenprinzips und des Algorithmus SIMPLE als Computer-Programm formuliert. Der Hohlraum ist rechteckig und die variablen Heiz- und Kühlflächen befinden sich auf gegenüberliegenden Vertikalseiten. Hauptziel der Berechnungen war es, den Einfluß der variablen Heiz- und Kühlflächen auf den Wärmeübergang zu ermitteln. Für eine bestimmte Kühlergröße zeigte sich eine Abnahme der gemittelten Nußelt-Zahl mit zunehmender Heizfläche. Andererseits — bei gegebener Heizfläche — stieg die Nußelt-Zahl mit der Kühlfläche an. Dieses Verhalten wurde bei allen untersuchten Rayleighzahlen gefunden.
Nomenclature g gravitational acceleration - H height of cavity - k thermal conductivity of fluid - l C cooler size - l H heater size - mean Nusselt number - Nu y local Nusselt number - P pressure - Pr Prandtl number - Ra Rayleigh number (Ra = gH 3(T H –T C)/()) - T temperature - T C temperature of cold surface - T H temperature of hot surface - T R reference temperature (T R = (T C +T H)/2) - u velocity component inx-direction - x horizontal axis - v velocity component iny-direction - y vertical axis Greek symbols thermal diffusivity - thermal expansion coefficient - density of fluid - stream function - kinematic viscosity 相似文献
11.
Two-dimensional numerical studies of flow and temperature fields for turbulent natural convection and surface radiation in
inclined differentially heated enclosures are performed. Investigations are carried out over a wide range of Rayleigh numbers
from 108 to 1012, with the angle of inclination varying between 0° and 90°. Turbulence is modeled with a novel variant of the k–ε closure model. The predicted results are validated against experimental and numerical results reported in literature. The
effect of the inclination of the enclosure on pure turbulent natural convection and the latter’s interaction with surface
radiation are brought out. Profiles of turbulent kinetic energy and effective viscosity are studied to observe the net effect
on the intensity of turbulence caused by the interaction of natural convection and surface radiation. The variations of local
Nusselt number and average Nusselt number are presented for various inclination angles. Marked change in the convective Nusselt
number is found with the orientation of enclosure. Also analyzed is the influence of change in emissivity on the flow and
heat transfer. A correlation relevant to practical applications in the form of average Nusselt number, as a function of Rayleigh
number, Ra, radiation convection parameter, N
RC and inclination angle of the enclosure, φ is proposed. 相似文献
12.
This paper has dealt with the natural convection heat transfer characteristics of microemulsion slurry composed of water, fine particles of phase change material (PCM) in rectangular enclosures. The microemulsion slurry exhibited non-Newtonian pseudoplastic fluid behavior, and the phase changing process can show dramatically variations in both thermophysical and rheological properties with temperature. The experiments have been carried out separately in three subdivided regions in which the state of PCM in microemulsion is in only solid phase, two phases (coexistence of solid and liquid phases) or only liquid phase. The complicated heat transfer characteristics of natural convection have appeared in the phase changing region. The phase change phenomenon of the PCM enhanced the heat transfer in natural convection, and the Nusselt number was generalized by introducing a modified Stefan number. However, the Nusselt number did not show a linear output with the height of the enclosure, since a top conduction lid or stagnant layer was induced over a certain height of the enclosure. The Nusselt number increased with a decrease in aspect ratio (width/height of the rectangular enclosure) even including the side-wall effect. However, the microemulsion was more viscous while the PCM was in the solid phase, the side-wall effect on heat transfer was greater for the PCM in the solid region than that for the PCM in the liquid region. The correlation generalized for the PCM in a single phase is $ Nu = 1/3(1 - C_1 )Ra^{{1 \over {3.5n + 1}}} , $ where C 1 = e –0.09AR for the PCM in solid phase and C 1 = e –0.33AR for the PCM in liquid phase. For the PCM in the phase changing region, the correlation can be expressed as $ Nu = CRa^{{1 \over {7n + 2}}} Ste^{ - (1.9 - 1.65n)} , $ where C = 1.22 – 0.035AR for AR > 10 and C = 0.55 – 16.4e –1.1AR for AR < 10. The enclosure height used in the present experiments was varied from H = 5.5 [mm] to 30.4 [mm] at the fixed width W = 120 [mm] and depth D = 120 [mm]. The experiments were done in the range of modified Rayleigh number 7.0 × 102 ≤ Ra ≤ 3.0 × 106, while the enclosure aspect ratio AR varied from 3.9 to 21.8. 相似文献
13.
14.
The flow and heat transfer in enclosures with conducting multiple partitions and side walls were numerically analyzed. Side walls were kept at isothermal conditions, while top and bottom walls were insulated. Employing control volume approach, a computer program based on SIMPLE algorithm was developed. Computations were carried out to investigate the effects of Rayleigh number, number of partitions and cavity aspect ratios on the heat transfer rate. The mean Nusselt numbers were calculated from computed temperature fields. It was observed that, the mean Nusselt number decreases with increasing partition number. It is inversely proportional to (1+N) for N≤4. For all partition numbers, the mean Nusselt number increases with increasing Rayleigh number. On the other hand, the cavity aspect ratio does not affect the mean Nusselt number to a considerable extent for considered aspect ratios in this study. 相似文献
15.
The heat transfer by natural convection in vertical and inclined rectangular enclosures with fins attached to the heated wall is numerically studied using the energy and Navier-Stokes equations with the Boussinesq approximation. The range of study covers 104Ra2×105,A=H/L=2.5 to ,B=l/L=0 to 1,C=h/L=0.25 to 2 andPr=0.72. The inclination angle from the vertical was from 0 to 60 degree. The variation of the local Nusselt numberNu
loc along the enclosure height and the average Nusselt numberNu as a function ofRa are computed. Streamlines and isotherms in the enclosure are produced. The results show thatB is an important parameter affecting the heat transfer through the cold wall of the enclosure. The heat transfer is reduced for decreasingC and it passes from a maximum for an inclination angle. The results show that the heat transfer can generally be reduced using appropriate geometrical parameters in comparison with a similar enclosure without fins.Die Wärmeübertragung bei freier Konvektion in vertikalen und geneigten rechtwinkligen Behältern mit Rippen an den beheizten Wänden wird unter Verwendung der Energie- und Navier-Stokes-Gleichungen sowie der Boussinesq-Approximation numerisch untersucht. Der Bereich der Studie liegt bei 104Ra2·105,A=H/L=2,5 bis ,B=l/L=0 bis 1,C=h/L=0,25 bis 2 undPr=0.72. Der Neigungswinkel der Wand liegt zwischen 0 und 60 Grad. Die Veränderung der lokalen Nusselt-Zahl entlang der Höhe der Behälterwände und die mittlere Nusselt-Zahl in Abhängigkeit derRa-Zahl werden berechnet. Strömungslinien und Isothermen werden im Behälter erzeugt. Die Ergebnisse zeigen, daßB ein wichtiger Parameter für die Wärmeübertragung an der nicht beheizten Wand des Behälters ist. Die übertragene Wärmemenge verringert sich mit abnehmendemC und durchschreitet ein Maximum für eine bestimmte Wandneigung. Die Ergebnisse zeigen, daß im Vergleich zu einer Anordnung ohne Rippen, die Wärmeübertragung bei geeigneten geometrischen Parametern allgemein reduziert werden kann. 相似文献
16.
A numerical study has been made of natural convection in an inclinded porous enclosure with an off-center diathermal partition. A temperature difference is imposed between the two isothermal end walls and the other two walls are assumed to be adiabatic. Numerical results are obtained for Rayleigh numbers (Ra) in the range of 10 to 500, the dimensionless partition location ( \(\bar S\) ) ranging from 0.125 to 0.875, the aspect ratios (A) of the enclosure ranging from 0.5 to 5, and the inclination angles (φ) of ?60, ?30, 0, 30, 60 degrees. It is found that the partition location has strong influence at lowRa and relatively weaker influence at highRa. The average Nusselt number reaches the minimum value when the partition is in the middle of the vertical enclosure, and the maximum Nusselt number occurs around φ = 30 degrees. 相似文献
17.
The problem of double-diffusive convection in inclined finned triangular porous enclosures for various thermal and concentration
boundary conditions and in the presence of heat source or sink was studied. The finite difference method was employed to solve
the dimensionless governing equations of the problem. The effects of the governing parameters, namely the dimensionless time
parameter, the inclination angle, Darcy number, heat generation/absorption parameter, the buoyancy parameter and the Rayleigh
number on the streamlines, temperature and concentration contours as well as selected velocity component in the x-direction, local and average Nusselt numbers and local and average Sherwood number at the heated and concentrated wall for
various values of the aspect ratio and the position of the fin were considered. The present results are validated by favorable
comparisons with previously published results. All the results of the problem were presented in graphical and tabular forms
and discussed. 相似文献
18.
In this work, the magnetohydrodynamics (MHD) natural convection heat transfer problem inside a porous medium filled with inclined rectangular enclosures is investigated numerically. The boundary conditions selected on the enclosure are two adiabatic and two isothermal walls. The governing equations, continuity, and Forchheimer extension of the Darcy law and energy are transformed into dimensionless forms by using a set of suitable variables, and then solved by using a finite difference scheme. The governing parameters are the magnetic influence number, the Darcy Rayleigh number, the inclination angle, and the aspect ratio of the enclosure. It is found that the magnetic influence number and the inclination angle have pronounced effects on the fluid flow and heat transfer in porous media-filled enclosures. 相似文献
19.
In this study, natural convection in non-rectangular enclosures is analyzed numerically. Streamlines and isotherms are presented
for different triangular enclosures with different boundary conditions and Rayleigh numbers. Mean Nusselt numbers on hot walls
are also calculated in order to make comparisons between different cases. The solutions are obtained for different aspect
ratios where boundary conditions represent the wintertime heating of an attic space. This made possible to investigate the
effect of aspect ratio on natural convection. In this study, quarter circular enclosure, which is very similar to right triangles,
is also examined. Consequently, we had the opportunity to analyze how shape changes affect the flow pattern. The results of
the calculations are compared with the similar enclosures and boundary conditions. 相似文献
20.
Gurkan YesilozOrhan Aydin 《Experimental Thermal and Fluid Science》2011,35(6):1169-1176
Natural convective flow and heat transfer in an inclined quadrantal cavity is studied experimentally and numerically. The particle tracing method is used to visualize the fluid motion in the enclosure. Numerical solutions are obtained via a commercial CFD package, Fluent. The working fluid is distilled water. The effects of the inclination angle, ? and the Rayleigh number, Ra on fluid flow and heat transfer are investigated for the range of angle of inclination between 0° ? ? ? 360°, and Ra from 105 to 107. It is disclosed that heat transfer changes dramatically according to the inclination angle which affects convection currents inside, i.e. flow physics inside. A fairly good agreement is observed between the experimental and numerical results. 相似文献