首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Cosmological implications on the polarization of the cosmic microwave background radiation, of a Kalb–Ramond field interacting with gauge fields and gravity as dictated by quantum consistency of heterotic string theory are surveyed. A parity violating augmentation going beyond the dictates of string theory is shown to lead to possible appearance of a B mode generated in the cosmic microwave background (CMB) in the post-last scattering epoch. This generation of the B mode of CMB appears to be dramatic when the augmentation is embedded within a Randall–Sundrum braneworld scenario of the first kind.  相似文献   

2.
We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.  相似文献   

3.
We calculate the cosmic microwave background (CMB) anisotropy spectrum in models with millicharged particles of electric charge q~10?6?10?1 in units of electron charge. We find that a large region of the parameter space for the millicharged particles exists where their effect on the CMB spectrum is similar to the effect of baryons. Using WMAP data on the CMB anisotropy and assuming the Big Bang nucleosynthesis value for the baryon abundance, we find that only a small fraction of cold dark matter, Ωmcp<0.007 (at 95% CL), may consist of millicharged particles with the parameters (charge and mass) from this region. This bound significantly narrows the allowed range of the parameters of millicharged particles. In models without paraphotons, millicharged particles are now excluded as a dark matter candidate. We also speculate that recent observation of 511-keV γ rays from the Galactic bulge may be an indication that a (small) fraction of cold dark matter is comprised of millicharged particles.  相似文献   

4.
The breakdown of statistical homogeneity and isotropy of cosmic perturbations is a generic feature of ultra-large scale structure of the cosmos, in particular, of non-trivial cosmic topology. The statistical isotropy (SI) of the cosmic microwave background temperature fluctuations (CMB anisotropy) is sensitive to this breakdown on the largest scales comparable to, and even beyond the cosmic horizon. We propose a set of measures,K l (l = 1, 2,3,...) which for non-zero values indicate and quantify statistical isotropy violations in a CMB map. We numerically compute the predictedK l spectra for CMB anisotropy in flat torus universe models. Characteristic signatures of different models in theK l spectrum are noted.  相似文献   

5.
We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.  相似文献   

6.
We demonstrate that creation of dark-matter particles at a constant rate implies the existence of a cosmological term that decays linearly with the Hubble rate. We discuss the cosmological model that arises in this context and test it against observations of the first acoustic peak in the cosmic microwave background (CMB) anisotropy spectrum, the Hubble diagram for supernovas of type Ia (SNIa), the distance scale of baryonic acoustic oscillations (BAO) and the distribution of large scale structures (LSS). We show that a good concordance is obtained, albeit with a higher value of the present matter abundance than in the ΛCDM model. We also comment on general features of the CMB anisotropy spectrum and on the cosmic coincidence problem.  相似文献   

7.
We study signatures of cosmic superstring networks containing strings of multiple tensions and Y junctions, on the cosmic microwave background (CMB) temperature and polarization spectra. Focusing on the crucial role of the string coupling constant g(s), we show that the number density and energy density of the scaling network are dominated by different types of string in the g(s) ~ 1 and g(s) ? 1 limits. This can lead to an observable shift in the position of the B-mode peak--a distinct signal leading to a direct constraint on g(s). We forecast the joint bounds on g(s) and the fundamental string tension μ(F) from upcoming and future CMB polarization experiments, as well as the signal to noise in detecting the difference between B-mode signals in the limiting cases of large and small g(s). We show that such a detectable shift is within reach of planned experiments.  相似文献   

8.
We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).  相似文献   

9.
Big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropy measurements give independent, accurate measurements of the baryon density and can test the framework of the standard cosmology. Early CMB data are consistent with the long-standing conclusion from BBN that baryons constitute a small fraction of matter in the Universe, but may indicate a slightly higher value for the baryon density. We clarify precisely what the two methods determine and point out that differing values for the baryon density can indicate either an inconsistency or physics beyond the standard models of cosmology and particle physics. We discuss other signatures of the new physics in CMB anisotropy.  相似文献   

10.
The blackbody nature of the cosmic microwave background (CMB) radiation spectrum is used in a modern test of the Copernican principle. The reionized universe serves as a mirror to reflect CMB photons, thereby permitting a view of ourselves and the local gravitational potential. By comparing with measurements of the CMB spectrum, a limit is placed on the possibility that we occupy a privileged location, residing at the center of a large void. The Hubble diagram inferred from lines of sight originating at the center of the void may be misinterpreted to indicate cosmic acceleration. Current limits on spectral distortions are shown to exclude the largest voids which mimic cosmic acceleration. More sensitive measurements of the CMB spectrum could prove the existence of such a void or confirm the validity of the Copernican principle.  相似文献   

11.
范祖辉 《物理》2005,34(4):240-245
文章对微波背景辐射的各向异性、偏振及宇宙电离的历史给出了评述性介绍.从大爆炸理论的预言,到观测的发现,到其各向异性及偏振的探测,微波背景辐射(CMB)向人们揭示了丰富的宇宙学信息.文章在对基本理论作了简单介绍后,着重讲述了最新的CMB的观测结果及其物理意义.特别对微波背景各向异性探测器(Wilkinson Microwave Anisotropy Probe,WMAP)的偏振观测及其对宇宙重新电离的限制给出了较详细的叙述.  相似文献   

12.
The analysis of anisotropies in the cosmic microwave background (CMB) has become an extremely valuable tool for cosmology. There is even hope that planned CMB anisotropy experiments may revolutionize cosmology. Together with determinations of the CMB spectrum, they represent the first precise cosmological measurements. The value of CMB anisotropies lies in large part in the simplicity of the theoretical analysis. Fluctuations in the CMB can be determined almost fully within linear cosmological perturbation theory and are not severely influenced by complicated nonlinear physics. In this contribution the different physical processes causing or influencing anisotropies in the CMB are discussed: the geometry perturbations at and after last scattering, the acoustic oscillations in the baryon-photon plasma prior to recombination, and the diffusion damping during the process of recombination. The perturbations due to the fluctuating gravitational field, the so-called Sachs-Wolfe contribution, is described in a very general form using the Weyl tensor of the perturbed geometry.  相似文献   

13.
《Physics letters. [Part B]》1988,212(3):273-276
The phase transition which produces cosmic strings is studied in curved spacetime. It is shown that cosmic string formation naturally takes place in the late inflationary stage if the string-forming scalar field is appropriately coupled with the spacetime curvature. As a result the cosmic string scenario of galaxy formation turns out to be compatible with inflation.  相似文献   

14.
We investigate a possible connection between the suppression of the power at low multipoles in the cosmic microwave background (CMB) spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon, the equation of state of the dark energy can be related to the apparent cutoff in the CMB spectrum. The present limits on the equation of state of dark energy are shown to imply an IR cutoff in the CMB multipole interval of 9>l>8.5.  相似文献   

15.
Observational cosmology has indeed made very rapid progress in recent years. The ability to quantify the universe has largely improved due to observational constraints coming from structure formation. The transition to precision cosmology has been spear-headed by measurements of the anisotropy in the cosmic microwave background (CMB) over the past decade. Observations of the large scale structure in the distribution of galaxies, high red-shift supernova, have provided the required complementary information. We review the current status of cosmological parameter estimates from joint analysis of CMB anisotropy and large scale structure (LSS) data. We also sound a note of caution on overstating the successes achieved thus far.  相似文献   

16.
A spectrographic global survey is performed to study the rigidity spectrum and anisotropy of galactic cosmic rays using spacecraft data and data obtained via ground-based observations of cosmic rays (CRs) by a worldwide network of stations during the GLE of July 14, 2000, and the strong magnetic storm related to the coronal mass ejection (CME) accompanying the solar flare. The CR rigidity spectrum observed over the range of 1 to ~20 GV during this period is shown to be described not only by the power function of particle rigidity; the distribution of CRs in the earthward direction varies over time and depends on their energy.  相似文献   

17.
For cosmic microwave background excess, it could be explained by a process during H recombination period from zi to ze (zi/ze~50), if for H-He mixture weak plasma, there may exist a substeady level (population inversion). The main feature of this model lies in a decrease at the Rayleigh-Jeans part of CMB near y~0.5.  相似文献   

18.
According to inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of new physics hypotheses. The initial state of quantum fluctuations is one of the important options at high energy scale, as it can affect observables such as the CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. The recent Planck constraint on spectral index motivated us to examine the effect of a new excited mode function(instead of pure de Sitter mode) on the CMB anisotropy at large angular scales. In so doing, it is found that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit 200 a tiny deviation appears. Also, it is shown that the power spectrum of CMB anisotropy is dependent on a free parameter with mass dimension H M* Mp and on the slow-roll parameter.  相似文献   

19.
Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.  相似文献   

20.
《Comptes Rendus Physique》2015,16(10):948-959
The cosmic microwave background is the most precise and the most simple cosmological dataset. This makes it our most prominent window to the physics of the very early Universe. In this article I give an introduction to the physics of the cosmic microwave background and show in some detail how primordial fluctuations from inflation are imprinted in the temperature anisotropy and polarisation spectrum of the CMB. I discuss the main signatures that are suggesting an inflationary phase for the generation of initial fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号