首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pyrolysis process of pine wood, a promising biofuel feedstock, has been studied with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. The mass spectra at different photon energies and temperatures as well as time-dependent profiles of several selected species during pine wood pyrolysis process were measured. Based on the relative contents of three lignin subunits, the data indicate that pine wood is typical of softwood. As pyrolysis temperature increased from 300 to 700 °C, some more details of pyrolysis chemistry were observed, including the decrease of oxygen content in high molecular weight species, the observation of high molecular weight products from cellulose chain and lignin polymer, and potential pyrolysis mechanisms for some key species. The formation of polycyclic aromatic hydrocarbons (PAHs) was also observed, as well as three series of pyrolysis products derived from PAHs with mass difference of 14 amu. The time-dependent profiles show that the earliest products are formed from lignin, followed by hemicellulose products, and then species from cellulose.
Figure
The pyrolysis study of pine wood based on synchrotron vacuum ultraviolet photoionization mass spectrometry.  相似文献   

2.
解万翠  顾小红  罗昌荣  王光雨  汤坚 《色谱》2006,24(4):339-342
为了研究香叶醇的糖苷类香料前体香叶基-β-D-吡喃葡萄糖苷的热裂解行为,在200,300,400 ℃条件下,分别采用 在线模式的裂解仪无氧裂解和离线模式的高温熔盐加热裂解,热解产生的物质均经毛细管气相色谱-质谱仪进行定性和定 量检测。根据实验结果,对香叶基-β-D-吡喃葡萄糖苷的裂解机理进行了初步探讨。实验发现,香叶基-β-D-吡喃葡萄糖 苷在200 ℃条件下裂解量很少;300 ℃条件下裂解产生大量香叶醇,而其他杂质较少;随着温度的升高,400 ℃条件下裂解 产生的副产物明显增加。实验结果表明以300 ℃条件下裂解效果最好。同时,香叶基-β-D-吡喃葡萄糖苷热裂解产生了特 征香味成分香叶醇,其裂解的基本反应是O-糖苷键的断裂。在试验的两种方法中,在线裂解模式实验方法先进,定性直接, 结果准确;离线裂解模式实验方法操作方便,简单易行,而且在定性基础上可以实现定量分析。  相似文献   

3.
生物质主要组分低温热解研究   总被引:21,自引:2,他引:19  
利用热重分析仪和裂解气质联用仪进行生物质主要组分低温热解特性研究。热重实验结果表明,生物质主要组分的热稳定性为:纤维素>木质素>半纤维素。半纤维素主要热解温度在210℃~320℃,而纤维素和木质素的主要热解温度分别在310℃~390℃和200℃~550℃。裂解气质联用实验考察不同温度对生物质主要组分低温热解产物的影响。半纤维素热解产物主要有乙酸、1-羟基-丙酮和1-羟基-2-丁酮,纤维素热解产物主要包括左旋葡聚糖和脱水纤维二糖,而木质素热解产物主要是邻甲氧基苯酚。  相似文献   

4.
Water-insoluble pyrolytic cellulose with similar appearance to pyrolytic lignin was found in cellulose fast pyrolysis oil. The influence of pyrolysis temperature on pyrolytic cellulose was studied in a temperature range of 300–600 °C. The yield of the pyrolytic cellulose increased with temperature rising. The pyrolytic cellulose was characterized by various methods. The molecular weight distribution of pyrolytic cellulose was analyzed by gel permeation chromatography (GPC). Four molecular weight ranges were observed, and the Mw of the pyrolytic cellulose varied from 3.4 × 103 to 1.93 × 105 g/mol. According to the elemental analysis (EA), the pyrolytic cellulose possessed higher carbon content and lower oxygen content than cellulose. Thermogravimetric analysis (TGA) indicated that the pyrolytic cellulose underwent thermo-degradation at 127–800 °C and three mass loss peaks were observed. Detected by the pyrolysis gas chromatography–mass spectrometry (Py-GC/MS), the main pyrolysis products of the pyrolytic cellulose included saccharides, ketones, acids, furans and others. Fourier transforms infrared spectroscopy (FTIR) also demonstrated that the pyrolytic cellulose had peaks assigned to CO stretching and glycosidic bond, which agreed well with the Py-GC/MS results. The pyrolytic cellulose could be a mixture of saccharides, ketones, and their derivatives.  相似文献   

5.
The direct application of field ionization to complex biomaterials is described. Volatiles are characterized by gas chromatography mass spectrometry. Complex involatile materials are investigated by thermal degradation in high vacuum. The methodology and typical analytical features of pyrolysis of biopolymers and soft ionization of their pyrolysates in the high electric field are described. The combination of direct, in-source pyrolysis mass spectrometry and pyrolysis gas chromatography mass spectrometry is used in two steps. Firstly, for fast profiling of the complex materials and, secondly, for identification of significant products of the controlled thermal degradation process. In particular, temperature programmed/time-resolved pyrolysis field ionization mass spectrometry has been shown to be an efficient analytical tool as demonstrated for typical examples such as chitin, cellulose, hemicellulose, lignin, wood, peat and coal. Recent results on foodstuffs such as coffee, chocolate, tea and biscuits illustrate the potential of the combined methods for routine work.  相似文献   

6.
采用热裂解-气相色谱/质谱仪联用技术,研究毛竹酶解/温和酸水解木质素(简称EMAL)的热解特性和热解产物的分布与形成规律.以温度为重要因素,研究其对木质素快速热裂解产物的影响,并通过主要的热解产物推断热解反应途径.研究结果表明,EMAL的热解产物主要是2,3-二氢苯并呋喃、酚类、脂类和少量乙酸.热解温度对热解产物组分的相对含量有显著影响,250~400 ℃时,产物主要是2,3-二氢苯并呋喃,320 ℃时其相对含量最高,达到66.26%;400~800 ℃时,热解产物主要是酚类,600 ℃时其相对含量最高,达到62.58%;800 ℃时出现了少量的乙酸.  相似文献   

7.
Pyrolysis of tobacco, a complex biomass matrix, was investigated to further understand thermal decomposition processes that are accompanied by evaporation of relatively stable non-polymeric endogenous compounds. Pyrolysis of two types of tobacco, bright and burley were studied using thermo-gravimetry mass spectrometry (TG–MS) and field ionization mass spectrometry (FIMS) analyses. Tobacco contains biopolymers and many non-polymeric compounds. Unlike many biomass pyrolysis tars derived from wood or cellulose, tobacco pyrolysis tars can contain significant amounts of high molecular weight endogenous constituents such as waxes and terpenes that are transferred intact. The phenomenon of evaporation of high molecular weight non-polymeric compounds is illustrated by tobacco micro-sample pyrolysis in FIMS under vacuum (at a pressure of 10−4 Torr). These experiments indicate that the evaporation of relatively stable high molecular weight species occurs below about 220 °C generating 300 Da and higher molecular weight products; and, decomposition of tobacco biopolymers such as starch, cellulose, hemicellulose, lignin, and pectin occurs mostly at temperatures higher than 220 °C producing species mostly with molecular weight below 300 Da. Some of the high molecular weight compounds, such as stigmasterol (412 Da), α-tocopherol (430 Da), and solanesol (630 Da), were tentatively identified using the FIMS spectra.  相似文献   

8.
Phosphorus is a key plant nutrient and as such, is incorporated into growing biomass in small amounts. This paper examines the influence of phosphorus, present in either acid (H3PO4) or salt ((NH4)3PO4) form, on the pyrolysis behaviour of both Miscanthus × giganteus, and its cell wall components, cellulose, hemicellulose (xylan) and lignin (Organosolv). Pyrolysis–gas chromatography–mass spectrometry (PY–GC–MS) is used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) is used to examine the distribution of char and volatiles. Phosphorus salts are seen to catalyse the pyrolysis and modify the yields of products, resulting in a large increase in char yield for all samples, but particularly for cellulose and Miscanthus. The thermal degradation processes of cellulose, xylan and Miscanthus samples occur in one step and the main pyrolysis step is shifted to lower temperature in the presence of phosphorus. A small impact of phosphorus was observed in the case of lignin char yields and the types of pyrolysis decomposition products produced. Levoglucosan is a major component produced in fast pyrolysis of cellulose. Furfural and levoglucosenone become more dominant products upon P-impregnation pointing to new rearrangement and dehydration routes. The P-catalysed xylan decomposition route leads to a much simpler mixture of products, which are dominated by furfural, 3-methyl-2-cyclopenten-1-one and one other unconfirmed product, possibly 3,4-dihydro-2-methoxy-2H-pyran or 4-hydroxy-5,6-dihydro-(2H)-pyran-2-one. Phosphorus-catalysed lignin decomposition also leads to a modified mixture of tar components and desaspidinol as well as other higher molecular weight component become more dominant relative to the methoxyphenyl phenols, dimethoxy phenols and triethoxy benzene. Comparison of the results for Miscanthus lead to the conclusion that the understanding of the fast pyrolysis of biomass can, for the most part, be gained through the study of the individual cell wall components, provided consideration is given to the presence of catalytic components such as phosphorus.  相似文献   

9.
A series of non-wood plant fibers, namely kenaf, jute, sisal and abaca, have been analyzed upon pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) of the whole material. The pyrolysis products mainly arise from the carbohydrate and lignin moieties of the fibers. The lignin-derived phenols belonged to the p-hydroxyphenylpropanoid (H), guaiacylpropanoid (G) and syringylpropanoid (S) structures, and showed a high S/G ratio of between 2.0 and 5.4, the highest corresponding to kenaf. Among the lignin-derived phenols released, small amounts of sinapyl and coniferyl acetates (in both cis- and trans-forms) were identified for the first time upon Py-GC/MS of lignocellulosic materials. Acetylation of the sinapyl and coniferyl alcohols was at the gamma-position of the side chain. The release of these alcohols derived from intact acetylated lignin units upon pyrolysis seems to indicate that the native lignin in the fibers selected for this study is at least partially acetylated. Sinapyl (and coniferyl) acetates have recently been suggested to be authentic lignin precursors involved in the polymerization of lignin along with the normal sinapyl and coniferyl alcohols. Py-GC/MS will offer a convenient and rapid tool for analyzing naturally acetylated lignins, as well as to screen plant materials for the presence of acetylated units in lignin.  相似文献   

10.
Sixteen sulfonated and unsulfonated azo dyes as well as eleven sulfonated and unsulfonated aromatic amines were analyzed and qualitatively characterized by means of pyrolysis gas chromatography/mass spectrometry at different temperatures. Aniline and aminonaphthalene were found to be the dominant pyrolysis products of sulfonated aromatic amines and dyes. Azo dye and dye class specific key compounds such as benzidine, vinyl-p-base and 4-aminoazobenzene could be identified by pyrolysis gas chromatography/mass spectrometry of commercial acid, cationic, direct, reactive and solvent dyes. 500 degrees C was the optimal pyrolysis temperature for most of the pyrolyzed compounds. The method was applied to a dried sample of a textile wastewater concentrate from a dyeing process. Reactive azo dyes of the group of Remazol dyes and anthraquinone dyes could be identified as the major compounds of the sample. The finding of caprolactam (a printing additive) suggests that the wastewater contained effluent from a process of heat-activated printing with reactive dyes. p-Chloraniline, a banned aromatic amine, was identified. Chemical reduction of the wastewater sample prior to pyrolysis resulted in the release of volatile aromatic amines and aided the classification of several products of pyrolysis.  相似文献   

11.
Two analytical procedures based on gas chromatography and mass spectrometry were used to study the compositions of a wild population and a selected clone (Torviscosa) of giant reed (Arundo donax L.), one of the most promising biomass both in terms of energy and fine chemicals production. Gas chromatography/mass spectrometry (GC/MS) was used to characterize and quantitatively determine the monosaccharide composition. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), using hexamethyldisilazane (HMDS) as a derivatising agent, was used to characterize the lignocellulosic polymers. Analytical pyrolysis was also used to study the composition of residues left after the catalytic hydrolysis used to convert cellulose to levulinic acid and hemicellulose to furfural.GC/MS allowed us to determine the monosaccharide composition and polysaccharide content of the giant reed samples, highlighting that there was no significant difference between the wild population and the selected clone. GC/MS also highlighted that the giant reed leaves have a higher percentage (roughly 60%) of polysaccharide material than the stalks, which contain approximately 50%.Py-GC/MS, following the disappearance of the pyrolysis products of polysaccharides, showed that 150 °C and 190 °C are the best temperatures to obtain the complete catalytic conversion of hemicellulose and cellulose, respectively. Analytical pyrolysis also highlighted that in the course of catalytic hydrothermal conversion a partial depolymerisation of lignin was obtained. In particular, the formation of lignin units containing free phenol groups via the cleavage of the β-aryl ether bonds was demonstrated. The presence of these free phenols in the lignin network suggests the possible exploitation of lignin residues as antioxidant components or in high value biopolymer industries rather than the traditional use as low-value fuel for energy production.  相似文献   

12.
Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of cellulose and on-line analysis of the pyrolysis vapors. Experiments were performed to reveal the effects of pyrolysis temperature and time on the distribution of the pyrolytic products, especially the formation characteristics of eighteen important products. During the fast pyrolysis process, the cellulose started decomposition to form organic volatile products at the set pyrolysis temperature of 400 °C. The pyrolytic products included various anhydrosugars (dominated by the levoglucosan (LG)), anhydrosugar derivatives (mainly the levoglucosenone (LGO), 1,4:3,6-dianhydro-α-d-glucopyranose (DGP), 1,5-anhydro-4-deoxy-d-glycero-hex-1-en-3-ulose (APP) and 1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one (LAC)), furan compounds (typically the 5-hydroxymethyl-furfural (HMF), furfural (FF) and furan (F)), as well as light linear carbonyls (mainly the hydroxyacetaldehyde (HAA) and 1-hydroxy-2-propanone (HA)). These products were generated with different characteristics. The LG was the most important product, it was thermally stable, and its formation was favored at elevated pyrolysis temperature and time. Most of the other products were also enhanced at elevated pyrolytic conditions. However, some products, such as the LGO, were favorable to be produced at low temperatures. Based on these characteristics, discussion was performed on the possible pyrolytic pathways for the formation of the important products.  相似文献   

13.
曹京宜  付大海  张峰  梁栋 《色谱》2000,18(5):390-393
 用裂解同时烷基化气相色谱-质谱联用技术(SPM-GC-MS)对不同类型的醇酸树脂进行分析研究,将衍生化试剂四甲基氢氧化胺与样品同时裂解,经高效毛细管气相色谱分离,质谱鉴定,可区分醇酸树脂中的多元醇、多元酸、植物油类型,由此对改性醇酸树脂作结构鉴定。与直接裂解-气相色谱-质谱联用技术比较,具有样品前处理快速、简单,用量少,灵敏度高,定性准确,谱图直观等特点。  相似文献   

14.
烟草中β-胡萝卜素的热裂解产物的研究   总被引:22,自引:0,他引:22  
杨伟祖  谢刚  王保兴  侯英  杨勇  徐济仓  杨燕  王玉 《色谱》2006,24(6):611-614
为了研究烟草中β-胡萝卜素的高温裂解产物对卷烟抽吸品质的影响,利用热裂解气相色谱/质谱联用仪在不同裂解氛围(空气、氮气中含10%O2及N2)和不同温度(300,600和900 ℃)下对β-胡萝卜素进行裂解,裂解产物用固相微萃取装置进行吸附,然后将吸附到的裂解产物用气相色谱/质谱联用仪(GC/MS)进行分析。结果表明,β-胡萝卜素在不同裂解条件下主要的裂解产物是甲苯、对二甲苯、1,2,3,4-四氢-1,1,6-三甲基萘和2,7-二甲基萘等化合物,另外还生成异佛尔酮、β-环柠檬醛、β-紫罗兰酮、二氢猕猴桃内酯等香味化合物,这些物质随裂解温度和裂解氛围的不同其含量有所差异。  相似文献   

15.
There has been much interest in the utilization of biomass-derived fuels as substitutes for fossil fuels in meeting renewable energy requirements to reduce CO2 emissions. In this study, the pyrolysis characteristics of biomass have been investigated using both a thermogravimetric analyzer coupled with a Fourier-transform infrared spectrometer (TG-FTIR) and an experimental pyrolyzer. Experiments have been conducted with the three major components of biomass, i.e. hemicellulose, cellulose, and lignin, and with four mixed biomass samples comprising different proportions of these. Product distributions in terms of char, bio-oil, and permanent gas are given, and the compositions of the bio-oil and gaseous products have been analysed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC). The TG results show that the thermal decomposition of levoglucosan is extended over a wider temperature range according to the interaction of hemicellulose or lignin upon the pyrolysis of cellulose; the formation of 2-furfural and acetic acid is enhanced by the presence of cellulose and lignin in the range 350-500 °C; and the amount of phenol, 2,6-dimethoxy is enhanced by the integrated influence of cellulose and hemicellulose. The components do not act independently during pyrolysis; the experimental results have shown that the interaction of cellulose and hemicellulose strongly promotes the formation of 2, 5-diethoxytetrahydrofuran and inhibits the formation of altrose and levoglucosan, while the presence of cellulose enhances the formation of hemicellulose-derived acetic acid and 2-furfural. Pyrolysis characteristics of biomass cannot be predicted through its composition in the main components.  相似文献   

16.
Site-specific carbon isotope composition of organic compounds can provide useful information on their origin and history in natural environments. Site-specific isotope analyses of small amounts of organic compounds (sub-nanomolar level), such as short-chain carboxylic acids and amino acid analogues, have been performed using gas chromatography/pyrolysis/isotope ratio mass spectrometry (GC/pyrolysis/IRMS). These analyses were previously limited to volatile compounds. In this study, site-specific carbon isotope analysis has been developed for non-volatile aromatic carboxylic acids at sub-micromolar level by decarboxylation using a continuous flow elemental analysis (EA)/pyrolysis/IRMS technique. Benzoic acid, 2-naphthylacetic acid and 1-pyrenecarboxylic acid were pyrolyzed at 500-1000 degrees C by EA/pyrolysis/IRMS to produce CO2 for delta13C measurement of the carboxyl group. These three aromatic acids were most efficiently pyrolyzed at 750 degrees C. Conventional sealed-tube pyrolysis was also conducted for comparison. The delta13C values of CO2 generated by the continuous flow technique were within 1.0 per thousand of those performed by the conventional technique, indicating that the new continuous flow technique can accurately analyze the carbon isotopic composition of the carboxyl group in aromatic carboxylic acids. The new continuous flow technique is simple, rapid and uses small sample sizes, so this technique will be useful for characterizing the isotopic signature of carboxyl groups in organic compounds.  相似文献   

17.
The principles and methods of soft ionization mass spectrometry in combination with pyrolysis of macromolecules are outlined. Essential features of the newly developed techniques are the extension of the recorded mass range and the almost exclusive formation of molecular ions of the pyrolyzates. Using field ionization and field desorption mass spectrometry at low and high mass resolution, with electrical and photographic detection, pyrolysis products of biomass were analyzed for the first time. The results of flash pyrolysis by Curie-point heating and thermally programmed degradation of biopolymers are compared.The main topic is the evaluation of the methodology for time- and temperature-resolved pyrolysis. The thermograms and pyrolysis mass spectra obtained enable the study of pyrolysis reactions and the chemical fingerprinting of complex biological matter. The kinetics for the devolatilization of individual chemical species or classes of compounds can be monitored. Curie-point pyrolysis of biopolymers such as kappa-carrageenan and time-programmed degradation of cellulose and lignin are reported. Furthermore, preliminary investigations of pine wood and coal illustrate the potential of the introduced methods.  相似文献   

18.
An analytical method using fractionated pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and applied for characterizing the type of interaction between 1-hydroxybenzotriazole (HBT)-mediator and pulp lignin in laccase delignification of pulp. In fractionated pyrolysis, the sample is pyrolyzed at progressively increasing temperatures in order to study particular fractions of the sample and to minimize secondary pyrolysis effects. This makes it possible to determine whether a certain pyrolysis product originates from one chemical moiety or different chemical moieties in one molecule. In the present method, samples were fractionated by thermal desorption at 200 °C followed by pyrolysis at progressively increasing temperatures from 320 to 800 °C. The products formed in each fraction were separated in a capillary GC column and detected and identified using MS. The type of interaction between HBT and pulp lignin was studied by following the formation of nitrogen-containing products during fractionated pyrolysis of a residual lignin isolated from laccase/HBT-treated oxygen-delignified softwood kraft pulp. This residual lignin was found to contain approximately 2% HBT residue. Most (87%) of this residue was covalently linked to the residual lignin. The results also strongly suggest that the HBT residue is present in two chemically different forms.  相似文献   

19.

The thermal decomposition of cotton and hemp fibers was studied after mild alkaline treatments with tetramethyl-, tetraethyl- and tetrabutylammonium hydroxides with the goal of modeling the chemical activation during carbonization of cellulosic fibers. The thermal decomposition was studied by thermogravimetry/mass spectrometry and pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS). The treated samples decomposed in two temperature ranges during heating in the thermobalance. At lower temperature, tetraalkylammonium hydroxides (TAAH) ionically bonded to the cellulose molecules were decomposed; moreover, the alkaline agents initiated the partial decomposition of cellulose. Those fiber segments, which were not accessible for TAAH, decomposed at similar temperatures as the original cotton and hemp samples. It is known that quaternary ammonium hydroxides swell the cellulosic fibers; however, the results of this study proved that there was a chemical interaction between the alkaline swelling agents and cotton or hemp fibers at rather low temperatures (200–300 °C). The evolved products indicated that the alkaline chemicals reacted with the cellulose molecules and alkylated compounds were formed. This observation was confirmed by thermochemolysis experiments carried out by Py–GC/MS using tetramethylammonium hydroxide reagent. The thermochemolysis experiments under mild conditions resulted in the methylation of the glucoside units and levoglucosan, and no peeling reactions of the sugar units were observed as during strong alkaline conditions described in the literature.

  相似文献   

20.
Archaeological oak (Quercus sp.) wood samples, ranging from 16(th) C. AD to 6000 BP, were studied using flash pyrolysis-gas chromatography/mass spectrometry to obtain insight into angiosperm lignin degradation. The pyrolysates revealed evidence of a number of 3-methoxy-1,2-benzenediol derivatives, methoxycatechols, directly related to 2,6-dimethoxyphenol, syringyl, moieties which are characteristic building blocks of angiosperm lignin. Mass spectra and mass chromatograms of these compounds are reported. The finding of these characteristic pyrolysis products in well-preserved archaeological wood provides unequivocal evidence that demethylation of syringyl units occurs very early in wood degradation. It is highly likely that the absence of abundant 3-methoxy-1, 2-benzenediols in degrading plant materials containing angiosperm lignin relates to the lability of these newly formed moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号