首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Syntheses and catalytic activities of seven new polymer-supported chiral Mo-based complexes are disclosed. Four of the complexes are polystyrene-based, and three involve polynorbornene supports. Studies concerning the ability of the polymer-bound chiral complexes to promote an assortment of asymmetric ring-closing (ARCM) and ring-opening (AROM) metathesis reactions are detailed. In many instances, levels of reactivity and enantioselectivity are competitive with those of the analogous homogeneous catalysts. The positive effect of lower cross-linking within the polymer backbone on reaction efficiency and asymmetric induction is detailed. The optically enriched products obtained through the use of the supported complexes, after simple filtration and removal of the supported Mo catalysts, contain significantly lower levels of metal impurities as compared to products synthesized with the corresponding homogeneous catalysts.  相似文献   

2.
In asymmetric olefin metathesis reactions, the addition of halide additives is often required to augment enantioselectivities, despite the fact that the additives result in catalysts with diminished reactivities. The preparation of new chiral Ru-based catalysts was accomplished by exploiting previously reported mechanistic studies. The catalysts possess a high level of reactivity and successfully induce high levels of asymmetry in desymmetrization reactions without the use of halide additives.  相似文献   

3.
The preparation of polyethylene-oligomer (PE(olig))-supported N-heterocyclic carbene ligands (NHCs) and their Ru complexes is described. These complexes are structurally analogous to their low molecular weight counterparts and can serve as thermomorphic, recoverable/recyclable ring-closing metathesis (RCM) catalysts. Because of the insolubility of PE(olig)-supported species at 25 °C, such complexes can perform homogeneous RCM reactions at 65 °C and, upon cooling, precipitate as solids. This allows for their quantitative separation from solutions of products.  相似文献   

4.
Several new C-H-activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g., carboxylates). The use of nitrato-type ligands in place of carboxylates afforded a significant improvement in metathesis activity and selectivity. With these catalysts, turnover numbers approaching 1000 were possible for a variety of cross-metathesis reactions, including the synthesis of industrially relevant products.  相似文献   

5.
Ruthenium alkylidene complexes containing one aryloxide "pseudohalide" ligand catalyze ring-closing metathesis of diene and ene-yne substrates with exceptionally high efficiency. Chromatographic removal of Ru residues is unexpectedly facile, offering a convenient means of isolating pure organic products in high yields.  相似文献   

6.
Since the discovery of metathesis as an instrument to reorganize olefinic double bonds, substantial progress has been attained, establishing this method as a versatile and efficient tool for C-C-bond formation. In the last decade fundamental achievements were accomplished in the field of chiral Ru- and Mo-based olefin metathesis, providing an asymmetric access to structures, which are difficult to obtain by alternative routes. The reader is taken behind the scenes of catalyst development, important areas of application are described up to the current state of research; this tutorial review deals with the question, how metathesis is connected to enantioselective synthesis.  相似文献   

7.
Chelated ruthenium catalysts for Z-selective olefin metathesis   总被引:1,自引:0,他引:1  
We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands that catalyze highly Z-selective olefin metathesis. A very simple and convenient procedure for the synthesis of such catalysts has been developed. Intramolecular C-H bond activation of the NHC ligand, promoted by anion ligand substitution, forms the appropriate chelate for stereocontrolled olefin metathesis.  相似文献   

8.
The decomposition of a series of ruthenium metathesis catalysts has been examined using methylidene species as model complexes. All of the phosphine-containing methylidene complexes decomposed to generate methylphosphonium salts, and their decomposition routes followed first-order kinetics. The formation of these salts in high conversion, coupled with the observed kinetic behavior for this reaction, suggests that the major decomposition pathway involves nucleophilic attack of a dissociated phosphine on the methylidene carbon. This mechanism also is consistent with decomposition observed in the presence of ethylene as a model olefin substrate. The decomposition of phosphine-free catalyst (H2IMes)(Cl)2Ru=CH(2-C6H4-O-i-Pr) (H2IMes = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) with ethylene was found to generate unidentified ruthenium hydride species. The novel ruthenium complex (H2IMes)(pyridine)3(Cl)2Ru, which was generated during the synthetic attempts to prepare the highly unstable pyridine-based methylidene complex (H2IMes)(pyridine)2(Cl)2Ru=CH2, is also reported.  相似文献   

9.
10.
The use of phosphites in second generation, ruthenium-based olefin metathesis pre-catalysts leads to an improvement in catalyst stability and activity at low catalyst loadings.  相似文献   

11.
12.
An efficient synthetic protocol involving reactions between the free carbene and [RuCl(2)(PPh(3))(2)(Ind)] followed by addition of pyridine leads to the isolation of olefin metathesis active [RuCl(2)(L)(Py)(Ind)] (L = SIMes and SIPr) complexes. This novel approach circumvents the use of costly tricyclohexylphosphine.  相似文献   

13.
Addition of 2 equiv of lithium pyrrolide to Mo(NR)(CHCMe2R')(OTf)2(DME) (OTf = OSO2CF3; R = 2,6-i-Pr2C6H3, 1-adamantyl, or 2,6-Br2-4-MeC6H2; R' = Me or Ph) produces Mo(NR)(CHCMe2R')(NC4H4)2 complexes in good yield. All compounds can be recrystallized readily from toluene or mixtures of pentane and ether and are sensitive to air and moisture. An X-ray structure of a 2,6-diisopropylphenylimido species shows it to be an unsymmetric dimer, {Mo(NAr)(syn-CHCMe2Ph)(eta5-NC4H4)(eta1-NC4H4)}{Mo(NAr)(syn-CHCMe2Ph)(eta1-NC4H4)2}, in which the nitrogen in the eta5-pyrrolyl bound to one Mo behaves as a donor to the other Mo. All complexes are fluxional on the NMR time scale at room temperature, with one symmetric species being observed on the NMR time scale at 50 degrees C in toluene-d8. The dimers react with PMe3 (at Mo) or B(C6F5)3 (at a eta5-NC4H4 nitrogen) to give monomeric products in high yield. They also react rapidly with 2 equiv of monoalcohols (e.g., Me3COH or (CF3)2MeCOH) or 1 equiv of a biphenol or binaphthol to give 2 equiv of pyrrole and bisalkoxide or diolate complexes in approximately 100% yield.  相似文献   

14.
Olefin metathesis is a transition metal‐mediated transformation that rearranges the carbon atoms of the carbon–carbon double bond of olefins. This reaction has become one of the most important and powerful reactions. Therefore development of new, well‐defined, highly active and selective catalysts is very desirable and a valuable goal. This mini‐review mainly introduces the development of ruthenium catalysts in olefin metathesis highlighting oxygen‐chelated indenylidene ruthenium catalysts. Applying an alkoxyl group on the indenylidene ligand fragment can generate the Ru ? O chelating bond. Additionally, various modifications of the ligand as well as the catalytic activity for ring‐closing metathesis reaction and selectivity of cross metathesis reaction are overviewed. Finally, the perspectives on the development of new catalysts are summarized. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The synthesis of olefin metathesis catalysts containing chiral, monodentate N-heterocyclic carbenes and their application to asymmetric ring-closing metathesis (ARCM) are reported. These catalysts retain the high levels of reactivity found in the related achiral variants (1a and 1b). Using the parent chiral catalysts 2a and 2b and derivatives that contain steric bulk in the meta positions of the N-bound aryl rings (catalysts 3-5), five- through seven-membered rings were formed in up to 92% ee. The addition of sodium iodide to catalysts 2a-4a (to form 2b-4b in situ) caused a dramatic increase in enantioselectivity for many substrates. Catalyst 5a, which gave high enantiomeric excesses for certain substrates without the addition of NaI, could be used in loadings of < or =1 mol %. Mechanistic explanations for the large sodium iodide effect as well as possible mechanistic pathways leading to the observed products are discussed.  相似文献   

16.
In the attempt to synthesize substituted allenyl esters through a metathesis coupling of unsubstituted allenyl esters and alkenes using a variety of ruthenium catalysts, it was discovered that allenyl esters themselves cleanly arrested the activity of the catalysts. Further studies suggests possible utility of allene esters as general quenching agents for metathesis reactions. To explore this idea, several representative olefin metathesis reactions, including ring closing, were successfully terminated by the addition of simple allenyl esters for more convenient purification.  相似文献   

17.
Jafarpour L  Nolan SP 《Organic letters》2000,2(25):4075-4078
Polymer-supported ruthenium catalysts (PCy(3))(2)Ru(=C(H)Ph)Cl(2), (PCy(3))Ru(IMes)(=C(H)Ph)Cl(2), and (PCy(3))Ru(SIMes)(=C(H)Ph)Cl(2), where IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene and SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene, have been prepared and found to be effective "boomerang" catalysts for ring-closing metathesis. They are recyclable, show comparable or better reactivity than their homogeneous counterparts, tolerate functional groups, and perform very well with dienes and moderately well with highly hindered substrates.  相似文献   

18.
19.
Mechanism and activity of ruthenium olefin metathesis catalysts.   总被引:2,自引:0,他引:2  
This report details the effects of ligand variation on the mechanism and activity of ruthenium-based olefin metathesis catalysts. A series of ruthenium complexes of the general formula L(PR(3))(X)(2)Ru=CHR(1) have been prepared, and the influence of the substituents L, X, R, and R(1) on the rates of phosphine dissociation and initiation as well as overall activity for olefin metathesis reactions was examined. In all cases, initiation proceeds by dissociative substitution of a phosphine ligand (PR(3)) with an olefinic substrate. All of the ligands L, X, R, and R(1) have a significant impact on initiation rates and on catalyst activity. The origins of the observed substituent effects as well as the implications of these studies for the design and implementation of new olefin metathesis catalysts and substrates are discussed in detail.  相似文献   

20.
A series of well accessible cationic ruthenium allenylidene complexes of the general type [(eta6-arene)(R3P)RuCl(=C=CR'2)]+ X- is described which constitute a new class of pre-catalysts for ring closing olefin metathesis reactions (RCM) and provide an unprecedented example for the involvement of metal allenylidenes in catalysis. They effect the cyclization of various functionalized dienes and enynes with good to excellent yields and show a great tolerance towards an array of functional groups. Systematic variations of their basic structural motif have provided insights into the essential parameters responsible for catalytic activity which can be enhanced further by addition of Lewis or Bronsted acids, by irradiation with UV light, or by the adequate choice of the "non-coordinating" counterion X-. The latter turned out to play a particularly important role in determining the rate and selectivity of the reaction. A similarly pronounced influence is exerted by remote substituents on the allenylidene residue which indicates that this ligand (or a ligand derived thereof) may remain attached to the metal throughout the catalytic process. X-ray crystal structures of the catalytically active allenylidene complexes 3b.PF6 and 15.OTf as well as of the chelate complex 10 required for the preparation of the latter catalyst are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号