首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
This paper concerns the solution of the NP-hard max-bisection problems. NCP func-tions are employed to convert max-bisection problems into continuous nonlinear program-ming problems. Solving the resulting continuous nonlinear programming problem generatesa solution that gives an upper bound on the optimal value of the max-bisection problem.From the solution, the greedy strategy is used to generate a satisfactory approximate so-lution of the max-bisection problem. A feasible direction method without line searches isproposed to solve the resulting continuous nonlinear programming, and the convergenceof the algorithm to KKT point of the resulting problem is proved. Numerical experimentsand comparisons on well-known test problems, and on randomly generated test problemsshow that the proposed method is robust, and very efficient.  相似文献   

2.
In practical applications of mathematical programming it is frequently observed that the decision maker prefers apparently suboptimal solutions. A natural explanation for this phenomenon is that the applied mathematical model was not sufficiently realistic and did not fully represent all the decision makers criteria and constraints. Since multicriteria optimization approaches are specifically designed to incorporate such complex preference structures, they gain more and more importance in application areas as, for example, engineering design and capital budgeting. The aim of this paper is to analyze optimization problems both from a constrained programming and a multicriteria programming perspective. It is shown that both formulations share important properties, and that many classical solution approaches have correspondences in the respective models. The analysis naturally leads to a discussion of the applicability of some recent approximation techniques for multicriteria programming problems for the approximation of optimal solutions and of Lagrange multipliers in convex constrained programming. Convergence results are proven for convex and nonconvex problems.  相似文献   

3.
This note presents an efficient method for the routine solution of the subproblem associated with the Lagrangian dual of discrete programming problems having separable non-linear objective function and linear constraints. An additional advantage for subgradient methods is described.  相似文献   

4.
A Kind of direct methods is presented for the solution of optimal control problems with state constraints.These methods are sequential quadratic programming methods.At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and Linear approximations to constraints is solved to get a search direction for a merit function.The merit function is formulated by augmenting the Lagrangian funetion with a penalty term.A line search is carried out along the search direction to determine a step length such that the merit function is decreased.The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadrade programming methods.  相似文献   

5.
The so called dual parametrization method for quadratic semi-infinite programming (SIP) problems is developed recently for quadratic SIP problems with a single infinite constraint. A dual parametrization algorithm is also proposed for numerical solution of such problems. In this paper, we consider quadratic SIP problems with positive definite objective and multiple linear infinite constraints. All the infinite constraints are supposed to be continuously dependent on their index variable on a compact set which is defined by a number equality and inequalities. We prove that in the multiple infinite constraint case, the minimu parametrization number, just as in the single infinite constraint case, is less or equal to the dimension of the SIP problem. Furthermore, we propose an adaptive dual parametrization algorithm with convergence result. Compared with the previous dual parametrization algorithm, the adaptive algorithm solves subproblems with much smaller number of constraints. The efficiency of the new algorithm is shown by solving a number of numerical examples.  相似文献   

6.
针对一类非线性规划问题的解存在的新等价性条件,给出了大范围收敛的连续化方法及证明了收敛性的结论.  相似文献   

7.
In this paper, we propose a convergent Lagrangian and objective level cut method for computing exact solution to two classes of nonlinear integer programming problems: separable nonlinear integer programming and polynomial zero-one programming. The method exposes an optimal solution to the convex hull of a revised perturbation function by successively reshaping or re-confining the perturbation function. The objective level cut is used to eliminate the duality gap and thus to guarantee the convergence of the Lagrangian method on a revised domain. Computational results are reported for a variety of nonlinear integer programming problems and demonstrate that the proposed method is promising in solving medium-size nonlinear integer programming problems.  相似文献   

8.
Based on an augmented Lagrangian line search function, a sequential quadratically constrained quadratic programming method is proposed for solving nonlinearly constrained optimization problems. Compared to quadratic programming solved in the traditional SQP methods, a convex quadratically constrained quadratic programming is solved here to obtain a search direction, and the Maratos effect does not occur without any other corrections. The “active set” strategy used in this subproblem can avoid recalculating the unnecessary gradients and (approximate) Hessian matrices of the constraints. Under certain assumptions, the proposed method is proved to be globally, superlinearly, and quadratically convergent. As an extension, general problems with inequality and equality constraints as well as nonmonotone line search are also considered.  相似文献   

9.
Filter methods were initially designed for nonlinear programming problems by Fletcher and Leyffer. In this paper we propose a secant algorithm with line search filter method for nonlinear equality constrained optimization. The algorithm yields the global convergence under some reasonable conditions. By using the Lagrangian function value in the filter we establish that the proposed algorithm can overcome the Maratos effect without using second order correction step, so that fast local superlinear convergence to second order sufficient local solution is achieved. The primary numerical results are presented to confirm the robustness and efficiency of our approach.  相似文献   

10.
本文用序列二次规划方法(SQP)结合Wolfe-Powell不精确线性搜索准则求解非线性规划问题.Wolfe-Powell准则是一种能够使目标函数获得充分下降而运行时间较省的确定步长方法.不精确线性搜索滤子方法比较其它结合精确线性搜索和信赖域方法求解问题的滤子方法更灵活更易实现.如果目标函数的预测下降量为负,我们的工作将主要利用可行恢复项改善可行性.一般条件下,本文提出的算法较易实现,且具有全局收敛性.数值试验显示了算法的有效性.  相似文献   

11.
Lotfi et al. [Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution, Appl. Math. Modell. 33 (2009) 3151–3156] pointed out that there is no method in literature for finding the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems and proposed a new method to find the fuzzy optimal solution of FFLP problems with equality constraints. In this paper, a new method is proposed to find the fuzzy optimal solution of same type of fuzzy linear programming problems. It is easy to apply the proposed method compare to the existing method for solving the FFLP problems with equality constraints occurring in real life situations. To illustrate the proposed method numerical examples are solved and the obtained results are discussed.  相似文献   

12.
The purpose of this paper is to introduce a solution method for multiple objective linear programming (MOLP) problems. The method, called interactive compromise programming (ICP), offers a practical solution to MOLP problems by combining judgement with an automatic optimization technique in decision-making. This is realised by using the method of compromise programming and the method of a two-person zero-sum game in an iterative way. The method is illustrated by a numerical example.  相似文献   

13.
Ghatee and Hashemi [M. Ghatee, S.M. Hashemi, Ranking function-based solutions of fully fuzzified minimal cost flow problem, Inform. Sci. 177 (2007) 4271–4294] transformed the fuzzy linear programming formulation of fully fuzzy minimal cost flow (FFMCF) problems into crisp linear programming formulation and used it to find the fuzzy optimal solution of balanced FFMCF problems. In this paper, it is pointed out that the method for transforming the fuzzy linear programming formulation into crisp linear programming formulation, used by Ghatee and Hashemi, is not appropriate and a new method is proposed to find the fuzzy optimal solution of multi-objective FFMCF problems. The proposed method can also be used to find the fuzzy optimal solution of single-objective FFMCF problems. To show the application of proposed method in real life problems an existing real life FFMCF problem is solved.  相似文献   

14.
An effective continuous algorithm is proposed to find approximate solutions of NP-hardmax-cut problems.The algorithm relaxes the max-cut problem into a continuous nonlinearprogramming problem by replacing n discrete constraints in the original problem with onesingle continuous constraint.A feasible direction method is designed to solve the resultingnonlinear programming problem.The method employs only the gradient evaluations ofthe objective function,and no any matrix calculations and no line searches are required.This greatly reduces the calculation cost of the method,and is suitable for the solutionof large size max-cut problems.The convergence properties of the proposed method toKKT points of the nonlinear programming are analyzed.If the solution obtained by theproposed method is a global solution of the nonlinear programming problem,the solutionwill provide an upper bound on the max-cut value.Then an approximate solution to themax-cut problem is generated from the solution of the nonlinear programming and providesa lower bound on the max-cut value.Numerical experiments and comparisons on somemax-cut test problems(small and large size)show that the proposed algorithm is efficientto get the exact solutions for all small test problems and well satisfied solutions for mostof the large size test problems with less calculation costs.  相似文献   

15.
Consider the class of linear-quadratic (LQ) optimal control problems with continuous linear state constraints, that is, constraints imposed on every instant of the time horizon. This class of problems is known to be difficult to solve numerically. In this paper, a computational method based on a semi-infinite programming approach is given. The LQ optimal control problem is formulated as a positive-quadratic infinite programming problem. This can be done by considering the control as the decision variable, while taking the state as a function of the control. After parametrizing the decision variable, an approximate quadratic semi-infinite programming problem is obtained. It is shown that, as we refine the parametrization, the solution sequence of the approximate problems converges to the solution of the infinite programming problem (hence, to the solution of the original optimal control problem). Numerically, the semi-infinite programming problems obtained above can be solved efficiently using an algorithm based on a dual parametrization method.  相似文献   

16.
《Optimization》2012,61(5):683-690
Our paper presents a new Criss-Cross method for solving linear programming problems. Starting from a neither primal nor dual feasible solution, we reach an optimal solution in finite number of steps if it exists. If there is no optimal solution, then we show that there is not primal feasible or dual feasible solution, We prove the finiteness of this procedure. Our procedure is not the same as the primal or dual simplex method if we have a primal or dual feasible solution, so we have constructed a quite new procedure for solving linear programming problems.  相似文献   

17.
Two-body, elastic, unbonded contact problems are formulated as quadratic programming problems. Uniqueness theorems of quadratic programming theory are applied to show that the solution of a contact problem, if one exists, is unique and can be readily found by the modified simplex method of quadratic programming. A solution technique that is compatible with finite-element methods is developed, so that contact problems with complex boundary configurations can be routinely solved. A number of classical and nonclassical problems are solved. Good agreement is found for problems with previously known solutions.  相似文献   

18.
In this paper, a sequential quadratically constrained quadratic programming (SQCQP) method for unconstrained minimax problems is presented. At each iteration the SQCQP method solves a subproblem that involves convex quadratic inequality constraints and a convex quadratic objective function. The global convergence of the method is obtained under much weaker conditions without any constraint qualification. Under reasonable assumptions, we prove the strong convergence, superlinearly and quadratic convergence rate.  相似文献   

19.
In a recent paper, Ganesan and Veermani [K. Ganesan, P. Veeramani, Fuzzy linear programs with trapezoidal fuzzy numbers, Ann. Oper. Res. 143 (2006) 305–315] considered a kind of linear programming involving symmetric trapezoidal fuzzy numbers without converting them to the crisp linear programming problems and then proved fuzzy analogues of some important theorems of linear programming that lead to a new method for solving fuzzy linear programming (FLP) problems. In this paper, we obtain some another new results for FLP problems. In fact, we show that if an FLP problem has a fuzzy feasible solution, it also has a fuzzy basic feasible solution and if an FLP problem has an optimal fuzzy solution, it has an optimal fuzzy basic solution too. We also prove that in the absence of degeneracy, the method proposed by Ganesan and Veermani stops in a finite number of iterations. Then, we propose a revised kind of their method that is more efficient and robust in practice. Finally, we give a new method to obtain an initial fuzzy basic feasible solution for solving FLP problems.  相似文献   

20.
双层规划在经济、交通、生态、工程等领域有着广泛而重要的应用.目前对双层规划的研究主要是基于强双层规划和弱双层规划.然而,针对弱双层规划的求解方法却鲜有研究.研究求解弱线性双层规划问题的一种全局优化方法,首先给出弱线性双层规划问题与其松弛问题在最优解上的关系,然后利用线性规划的对偶理论和罚函数方法,讨论该松弛问题和它的罚问题之间的关系.进一步设计了一种求解弱线性双层规划问题的全局优化方法,该方法的优势在于它仅仅需要求解若干个线性规划问题就可以获得原问题的全局最优解.最后,用一个简单算例说明了所提出的方法是可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号