首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel lidocaine ion-selective electrode is prepared, characterized and used in pharmaceutical analysis. The electrode incorporates PVC-membrane with lidocaine-sulfathiazole ion pair complex. The influences of membrane composition, temperature, pH of the test solution, and foreign ions on the electrode performance were investigated. The electrode showed a Nernstian response over a lidocaine concentration range from 1.0 ×10−5 to 1.0 × 10−1 mol L−1 with a slope of 60.1 ± 0.2 mV per decade at 25°C and was found to be very selective, precise, and usable within the pH range 5–9.5. The standard electrode potentials, E o, were determined at 10, 15, 20, 25, 30, 35 and 40°C, and used to calculate the isothermal temperature coefficient (dE o/dT=−0.0003 V °C−1) of the electrode. However, the electrode performance is significantly decreased at temperatures higher than 45°C. The electrode was successfully used for potentiometric determination of lidocaine hydrochloride in pharmaceutical products. The article is published in the original.  相似文献   

2.
3.
A supported liquid and a poly(vinyl chloride) (PVC)-based membrane selective for dodecylsulfate (DS) ion are described. The active element is a membrane containing a dissolved ion association complex of DS with cetylpyridinium (CP+) cation. The supported liquid membrane electrode (acetophenone as solvent) showed a Nernstian response towards the DS anion over the concentration range of sodium dodecylsulfate (SDS) from 8.3×10−3 to 1.0×10−6 mol dm−3 at 25 °C. The proposed electrode also showed a super-Nernstian potential response (108±2 mV decade−1) at low concentrations (1.0×10−9 to 1.0×10−6 mol dm−3). Moreover, this electrode showed good selectivity and precision (R.S.D.?2.0%), and was usable within the pH range 4.0-6.8. The proposed electrode revealed a lower limit of detection of 6.3×10−7 mol dm−3 and improved selectivity in comparison with the some previously reported DS ion selective electrodes. The isothermal temperature coefficient of this electrode amounted to −0.001 V °C−1. The liquid membrane electrode may find application in the direct determination of SDS by the standard addition method at pH 5.0, and in the physicochemical studies of surfactant solutions.  相似文献   

4.
Guo H  Yin T  Su Q  Qin W 《Talanta》2008,75(3):851-855
A novel potentiometric method for the determination of ascorbate is described in this communication. It is based on ascorbate oxidation with permanganate which is continuously released from the inner reference solution of a ligand-free tridodecylmethylammonium chloride (TDMAC)-based polymeric membrane ion selective electrode (ISE). The ISE potential determined by the activity of permanganate ions released at the sample-membrane phase boundary is increased with the consumption of permanganate. The proposed membrane electrode is useful for continuous and reversible detection of ascorbate at concentrations in 0.1M NaCl ranging from 1.0 x 10(-6) to 1.0 x 10(-3)M with a detection limit of 2.2 x 10(-7)M.  相似文献   

5.
A sulfate ion-selective PVC membrane sensor based on 4-(4-bromophenyl)-2,6-diphenylpyrilium perchlorate (BDPP) as a novel sensing material is successfully developed. The electrode shows a good selectivity for sulfate ion with respect to common organic and inorganic anions. The sensor exhibits a good linear response with slope of -28.9+/-0.5 mV per decade over the concentration range of 1.0x10(-6)-1.0x10(-2) M, and a detection limit of 8.0x10(-7) M of SO(4)(2-) ions. The electrode response is independent of pH in the range of 4.0-9.0. The proposed sensor was applied as an indicator electrode in potentiometric titration of sulfate and barium ions, and to the determination of zinc in zinc sulfate tablets.  相似文献   

6.
Singh AK  Mehtab S  Saxena P 《Talanta》2006,69(5):1143-1148
A novel bromide ion-selective PVC membrane sensor based on 2,3,10,11-tetraphenyl-1,4,9,12-tetraazacyclohexadeca-1,3,9,11-tetraene zinc(II)complex (I) as carrier has been developed. The electrode exhibited wide working concentration range 2.2 × 10−6 to 1.0 × 10−1 M and a limit of detection as 1.4 × 10−6 M with a Nernstian slope of 59.2 ± 0.5 mV per decade. The response time of electrode was 20 s over entire concentration range. The electrode possesses the advantages of low resistance, fast response and good selectivities for bromide over a variety of other anions and could be used in a pH range of 3.5–9.5. It was successfully used as an indicator electrode in the potentiometric titration of bromide ions with silver ion and also in the determination of bromide in real samples.  相似文献   

7.
Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 × 10−7 to 1.0 × 10−2 M (detection limit 5.5 × 10−8 M) with a Nernstian slope of 19.7 mV decade−1 of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.  相似文献   

8.
A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis.  相似文献   

9.
A new PVC membrane electrode for the triiodide ion based on a charge-transfer complex of iodine with 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as a membrane carrier was prepared. The electrode exhibits a Nernstian response for triiodide ions over a wide concentration range (1.0 x 10(-1)-1.0 x 10(-5) M) with a slope of 59.3 +/- 0.9 mV decade(-1) and a detection limit of 6.3 x 10(-6) M. It has a response time of 30 s and can be used for at least 3 months without any divergence in the potential. The potentiometric response is independent of the pH, in the pH range 1.6 - 10.0. The proposed electrode has shown very high selectivity for the triiodide ion over a wide variety of other anions. This electrode was successfully applied as an indicator electrode in the potentiometric titration of ascorbic acid and hydroquinone from pharmaceutical preparations as well as ascorbic acid in orange juice and dissolved O2 in tap water.  相似文献   

10.
Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L1) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L2) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L2:PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L2 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 × 10−8 mol L−1 for PME and 7.7 × 10−9 mol L−1 for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.  相似文献   

11.
Summary Based on a theoretical analysis, the response characteristics of a gas permeable/hydrogen ion carrier membrane exhibiting selectivity for bicarbonate have been improved. Novel minielectrodes show a linear response to HCO3 in the range 10–3 M to 10–1 M (slope:-54 mV) and a 95%-response time of 94 s (10–1 M solution).
Optimierung einer bicarbonatselektiven Flüssigmembranelektrode
Zusammenfassung Auf der Grundlage einer theoretischen Analyse wurden die Elektrodeneigenschaften eines Bicarbonatsensors, beruhend auf einer gasdurchlässigen und gleichzeitig Wasserstoffionencarrier enthaltenden Membran, optimiert. Neuartige Minielektroden weisen eine lineare Elektrodenfunktion im Bereich 10–3 M bis 10–1 M HCC3 auf (Steilheit:-54 mV); die 95%-Ansprechzeit in 0,1M Lösungen beträgt 94 s.
  相似文献   

12.
This study is an application of the experimental design methodology for optimizing a potassium sulfate synthesis reaction. The latter is a two‐stage reaction through an intermediate product (Schoenite: K2SO4.MgSO4·6H2O). To determine optimal experimental conditions of the first stage, we have conducted a fractional factorial design and a central composite one. The optimal conditions of the second stage were determined only by means of a fractional factorial design. Several physico‐chemical techniques were used to implement this study, namely potentiometry, complexometry, gravimetry and X‐ray diffraction. This work has showed that this double decomposition reaction, when performed under the determined optimal conditions, gives good quality potassium sulfate (purity more than 95%) with a maximal yield. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Several procedures of urease immobilization on the surface of the polymeric membrane pH electrode with tri-n-dodecylamine as a neutral carrier were compared. The best results were obtained for the urea sensor with covalently bound urease. The sensor characteristics including the effect of buffer, pH and concentration and the effect of stirring rate are presented. These effects are in good agreement with theoretical expectations.  相似文献   

15.
Badawy SS  Shoukry AF  Rizk MS  Omar MM 《Talanta》1988,35(6):487-489
A hydralazine ion-selective PVC membrane electrode based on hydralazinium tetraphenylborate has been prepared with dioctyl phthalate as plasticizer. The electrode showed linear response with a slope factor of 57.5 mV/concentration decade at 20 degrees over the concentration range from 4 x 10(-4) to 10(-1)M hydralazine. The effects, on the electrode performance, of membrane composition, pH of the test solution and the time of soaking were studied. The electrode exhibited good selectivity for hydralazine with respect to a large number of inorganic cations and organic substances of biological importance. The standard-addition method and potentiometric titrations were used to determine hydralazine concentrations in pure solutions and in a pharmaceutical preparation, with satisfactory results.  相似文献   

16.
A new selective membrane electrode for the measurement of lead activities is proposed. The preparation of active components of the membrane is described. The ready made electrode insert was used in which the PVC membrane was replaced by the prepared membrane. Experimental results document the emf response of profile, the selectivity, the detection limit and the effect of the sample media. The prepared electrode was applied for the measurement of the lead concentration in water samples. Activated alumina micro-column was used for the pre-concentration of lead in the analyzed water samples. The obtained results were compared with those determined by atomic absorption spectrometry.  相似文献   

17.
A new kind of neutral carrier is described, binuclear metalloporphyrin, which exhibits the anti-Hofmeister selectivity pattern for anions. A comparison of potentiometric response characteristics between the binuclear and mononuclear metalloporphyrins is discussed in view of the coordination chemistry of metalloporphyrins. The interaction between the ionophore and the analyte anion was investigated by UV/Vis and IR spectroscopy. The transfer process of the analyte anion across the membrane interface was studied by A.C. impedance measurements. The origin of the anti-Hofmeister selectivity sequence was explored by quantum chemical calculations.  相似文献   

18.
Poly(vinylchloride) (PVC) based membranes of macrocycles 2,3,4:9,10,11-dipyridine-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L1) and 2,3,4:9,10,11-dipyridine-1,5,8,12-tetramethylacrylate-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L2) with NaTPB and KTpClPB as anion excluders and dibutylphthalate (DBP), benzyl acetate (BA), dioctylphthalate (DOP), o-nitrophenyloctyl ether (o-NPOE) and tri-n-butylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as Co2+ selective electrodes. The best performance was observed with the membranes having the composition L2:PVC:TBP:NaTPB in the ratio of 6:39:53:2 (w/w; mg). The performance of the membrane based on L2 was compared with polymeric membrane electrode (PME) and coated graphite electrode (CGE). The PME exhibits detection limit of 4.7 × 10−8 M with a Nernstian slope of 29.7 mV decade−1 of activity between pH 2.5 and 8.5 whereas CGE exhibits the detection limit of 6.8 × 10−9 M with a Nernstian slope of 29.5 mV decade−1 of activity between pH 2.0 and 9.0. The response time for PME and CGE was found to be 11 and 8 s, respectively. The CGE has been found to work satisfactorily in partially non-aqueous media up to 35% (v/v) content of methanol, ethanol and 25% (v/v) content of acetonitrile and could be used for a period of 4 months. The CGE was successfully applied for the determination of Co2+ in real and pharmaceutical samples and as an indicator electrode in potentiometric titration of cobalt ion.  相似文献   

19.
A triiodide-selective electrode based on copper (II)-Schiff base complex as a membrane carrier is proposed. The electrode was prepared by incorporating the carrier into a plasticized polyvinylchloride (PVC) membrane and was directly coated on the surface of a graphite electrode. The obtained electrode showed a near Nernstian slope of 57.0 ± 0.4 mV/decade to I 3 ions over an activity range of 1.0 × 10−5−1.0 × 10−1 M with a limit of detection of 4.8 × 10−6 M. The response time of the electrode was fast (5 s) and the electrode could be used for about 2 months without considerable divergence in response. The potentiometric selectivity coefficients were evaluated and displayed anti-Hofmeister behavior. The electrode was used as an indicator electrode in the potentiometric titration of the triiodide ion and in the determination of ascorbic acid in vitamin C tablets. The text was submitted by the authors in English.  相似文献   

20.
The potentiometric anion selectivity of two polymer membrane based electrodes (I and II) formulated with two new cyclopalladated amine complexes as the active components are examined. The electrodes exhibit a non-Hofmeister selectivity pattern with a significantly enhanced response towards thiocyanate, iodide and nitrite. The graph potential versus log c is linear over the concentration range 10(-6)-6x10(-2) M thiocyanate with electrode I and 10(-6)-10(-3) M with electrode II; 10(-5)-10(-2) M iodide with electrode I and 10(-3)-6x10(-2) M with electrode II; and 10(-3)-6x10(-2) M nitrite with both electrodes. The influence of the plasticizer and pH are studied. The potentiometric selectivity coefficients for I, II and blank membrane electrodes are reported. The selective interaction between Pd(II) thiocyanate, iodide and nitrite is postulated to be the reason for its higher response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号