首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sol-gel polytetrahydrofuran (poly-THF) coating was developed for high-sensitivity sample preconcentration by capillary microextraction (CME). Parts per quadrillion (ppq) level detection limits were achieved for both polar and nonpolar analytes through sample preconcentration on sol-gel poly-THF coated microextraction capillaries followed by gas chromatography (GC) analysis of the extracted compounds using a flame ionization detector (FID). The sol-gel coating was in situ created on the inner walls of a fused silica capillary using a sol solution containing poly-THF as an organic component, methyltrimethoxysilane (MTMOS) as a sol-gel precursor, trifluoroacetic acid (TFA, 5% water) as a sol-gel catalyst, and hexamethyldisilazane (HMDS) as a deactivating reagent. The sol solution was introduced into a hydrothermally-treated fused silica capillary and the sol-gel reactions were allowed to take place inside the capillary for 60 min. A wall-bonded coating was formed due to the condensation of silanol groups residing on the capillary inner surface with those on the sol-gel network fragments evolving in close vicinity of the capillary walls. Poly-THF is a medium polarity polymer, and was found to be effective in carrying out simultaneous extraction of both polar and nonpolar analytes. Efficient extraction of a wide range of trace analytes from aqueous samples was accomplished using sol-gel poly-THF coated fused silica capillaries for further analysis by GC. The test analytes included polycyclic aromatic hydrocarbons (PAHs), aldehydes, ketones, chlorophenols, and alcohols. To our knowledge, this is the first report on the use of a poly-THF based sol-gel material in analytical microextraction. Sol-gel poly-THF coated CME capillaries showed excellent solvent and thermal stability (>320 degrees C).  相似文献   

2.
A novel open-tubular capillary electrochromatography (OTCEC) column was prepared by immobilizing dodecanethiol gold nanoparticles on prederivatised fused-silica capillary columns with sol-gel technology. 3-Mercaptopropyl-trimethoxysilane (MPTMS) was selected as sol-gel precursor to develop a sol-gel layer on the inner wall of the capillary, prior to assembly of dodecanethiol gold nanoparticles onto the generated sol-gel layer through specific interaction between the gold nanoparticles and surface terminating thiol groups. The electrochromatographic behaviour of the sol-gel gold nanoparticle capillary was compared with a gold nanoparticle capillary prepared via MPTMS surface functionalisation, through variation of the percentage of the organic modifier, pH, and separation voltage. Efficient separation for a "reversed-phase" test mixture of thiourea, naphthalene, and biphenyl and for selected polycyclic aromatic hydrocarbons (PAHs) was obtained on the sol-gel based gold nanoparticle capillaries. OTCEC separations of three selected drug substances (propiophenone, benzoin, and warfarin) were also demonstrated. Scanning electron microscopy was used for the characterization of the sol-gel gold nanoparticle capillary surface. The results confirm that dodecanethiol gold nanoparticles, bound on the sol-gel-based inner layer of fused-silica capillary, can provide sufficient solute-bonded phase interactions for OTCEC with reproducible retention as well as characteristic reversed-phase behaviour.  相似文献   

3.
A sol-gel polydimethyldiphenylsiloxane (PDMDPS) coating was developed for capillary microextraction on-line hyphenated with high-performance liquid chromatography (HPLC). This coating was created using methyltrimethoxysilane (MTMS) as the sol-gel precursor and di-hydroxy-terminated PDMDPS as the sol-gel active polymer. The methyl and phenyl groups on the sol-gel active polymer and the methyl groups on the sol-gel precursor ultimately turned into pendant groups providing the ability to extract non-polar analytes. A 40-cm segment of 0.25mm I.D. fused silica capillary containing the sol-gel PDMDPS coating was installed as an external sampling loop in an HPLC injection port. Aqueous samples containing polycyclic aromatic hydrocarbons (PAHs), aromatic compounds, ketones, and aldehydes were passed through this capillary wherein the analytes were extracted by the sol-gel coating. The extracted analytes were then transferred to the HPLC column using isocratic or gradient elution with an acetonitrile/water mobile phase. This capillary demonstrated excellent extraction capability for non-polar (e.g., polycyclic aromatic hydrocarbons and aromatic compounds) as well as moderately polar compounds, such as aromatic amines, ketones, and aldehydes. The test results indicate that PDMDPS can be successfully immobilized into a sol-gel network and that the resulting solvent-resistant sol-gel organic-inorganic hybrid coating can be effectively used for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. The test results also indicate that the sol-gel PDMDPS coated capillary is resistant to high-temperature solvents, making it suitable for applications in high-temperature HPLC. To the best of our knowledge, this is the first report on the creation of a silica-based sol-gel PDMDPS coating used in capillary microextraction on-line hyphenated to HPLC.  相似文献   

4.
A negatively charged sol-gel coating was developed for on-line preconcentration of zwitterionic biomolecules in capillary electrophoresis (CE), using asparagine and myoglobin as representative zwitterionic bioanalytes. The sol-gel coating was created by using a solution containing three precursors: mercaptopropyltrimethoxysilane (MPTMS), tetramethoxysilane (TMOS), and n-octadecyltriethoxysilane (C18-TEOS). The resulting sol-gel coating contained chemically bonded mercaptopropyl functional groups that were further oxidized by hydrogen peroxide to the corresponding sulfonic acid moieties. Such a surface-bonded sol-gel coating can carry a negative charge over a wide range of pH due to the presence of deprotonated sulfonic acid groups. Under favorable pH conditions, the negatively charged sol-gel coating can facilitate the extraction of positively charged analytes from a zwitterionic sample through electrostatic interaction. This principle was employed to extract myoglobin and asparagine by passing aqueous samples of these zwitterionic analytes through a negatively charged sol-gel column. The extracted analytes were then desorbed and focused via local pH change and stacking. The local pH change was accomplished by passing a buffer solution with a pH above the solute p/ value, while a dynamic pH junction between the sample solution and the background electrolyte was utilized to facilitate solute focusing. The sorption/desorption phenomena could, perhaps, also be explained on the basis of ion-exchange and local pH junction effects. On-line preconcentration and analysis results obtained on sulfonated sol-gel columns were compared with those obtained on an uncoated fused silica capillary of identical dimensions using conventional sample injections. Using UV detection, the presented sample preconcentration technique provided a sensitivity enhancement factor (SEF) on the order of 3 x 10(3) for myoglobin, and 7 x 10(3) for asparagine.  相似文献   

5.
A sol-gel coating with anchored methyl groups was developed for capillary microextraction hyphenated on-line with high-performance liquid chromatography (HPLC). This was accomplished by using methyltrimethoxysilane as the sol-gel precursor. The methyl group on the sol-gel precursor ultimately turned into a pendant group on the created sol-gel coating and was primarily responsible for the extraction of nonpolar analytes. A 40-cm segment of 0.25mm I.D. fused silica capillary containing the sol-gel methyl coating on the inner surface was installed as a sampling loop in an HPLC injection port. The analytes were extracted by the coating when an aqueous sample containing the analytes was passed through this capillary. The extracted analytes were then transferred to the HPLC column using isocratic elution with an acetonitrile/water mobile phase. This capillary demonstrated excellent extraction capability for polycyclic aromatic hydrocarbons and ketones. Unexpectedly, this coating also provided good extraction for polar analytes, including aromatic phenols, alcohols, and amines. Considering the fact that the methyl group is nonpolar in nature, such an extraction behavior of sol-gel methyl coating toward polar analytes is counterintuitive. Thus, sol-gel sorbents with short alkyl side chains have the potential to offer a polymer-free alternative to traditional sol-gel capillary microextraction (CME) media commonly prepared with the use of polymers in the sol solution. Elimination of polymers from the sol-gel coating solution is conducive to improving thermal stability and solvent tolerance of the created sol-gel extracting phase. This also makes the preparation of sol-gel coatings facile and cost-effective. Possessing excellent solvent stability, such sol-gel coatings offer the opportunity for effective on-line hyphenation of capillary microextraction with HPLC and other liquid-phase separation techniques that employ organo-aqueous mobile phases.  相似文献   

6.
A novel scalable procedure for the thermally initiated polymerisation of bonded monolithic porous layers of controlled thickness within open tubular fused silica capillaries (monoPLOT columns) is presented. Porous polymer layers of either polystyrene-divinylbenzene or butyl methacrylate-ethylene dimethacrylate, of variable thickness and morphology were polymerised inside fused silica capillaries utilising combined thermal initiation and laminar flow of the polymerisation mixture. The procedure enables the production through thermal initiation of monoPLOT columns of varying length, internal diameter, user defined morphology and layer thickness for potential use in both liquid and gas chromatography. The morphology and thickness of the bonded polymer layer on the capillary wall is strongly dependent on the laminar flow properties of the polymerisation mixture and the changing shear stress within the fluid across the inner diameter of the open capillary. Owing to the highly controlled rate of polymerisation and its dependence on fluid shear stress at the capillary wall, the procedure was demonstrably scalable, as illustrated by the polymerisation of identical layers within different capillary diameters.  相似文献   

7.
In this work, the properties of four cationic copolymers synthesized in our laboratory are studied as physically adsorbed coatings for capillary electrophoresis (CE). Namely, the four copolymers investigated were poly(N-ethyl morpholine methacrylamide-co-N,N-dimethylacrylamide), poly(N-ethyl pyrrolidine methacrylate-co-N,N-dimethylacrylamide), poly(N-ethyl morpholine methacrylate-co-N,N-dimethylacrylamide) and poly(N-ethyl pyrrolidine methacrylamide-co-N,N-dimethylacrylamide). Capillaries were easily coated using these four different macromolecules by simply flushing into the tubing an aqueous solution containing the copolymer. The stability and reproducibility of each coating were tested for the same day, different days and different capillaries. It is demonstrated that the use of these coatings in CE can drastically reduce the analysis time, improve the resolution of the separations or enhance the analysis repeatability at very acidic pH values compared to bare silica columns. As an example, the analysis of an organic acids test mixture revealed that the analysis time was reduced more than 6-times whereas the separation efficiency was significantly increased to nearly 10-times attaining values up to 595,000 plates/m using the coated capillaries. Moreover, it was shown that all the copolymers used as coatings for CE allowed the separation of basic proteins by reducing their adsorption onto the capillary wall. Links between their molecular structure, physicochemical properties and their performance as coatings in CE are discussed.  相似文献   

8.
A new type of capillary column for open-tubular electrochromatography   总被引:1,自引:0,他引:1  
Zhao Y  Zhao R  Shangguan D  Liu G 《Electrophoresis》2002,23(17):2990-2995
A new type of open-tubular C(18) ester-bonded electrochromatographic column was prepared with sol-gel technology, followed by an on-column octadecyl silylation reaction. Glycidoxypropyltrimethoxysilane, a widely used and important silane agent, was used as the sol-gel precursor to form a thin coating layer on the wall of the fused-silica capillary. The C(18) groups were introduced into the coating layer by on-column esterification reaction with stearic acid. The electrochromatography behavior of the column was evaluated in terms of the separation of peptides. A high efficiency of 4.8x10(5) plates/m was achieved for a basic pentapeptide using the C(18 )ester-bonded column. In comparison with bare capillaries and glycidoxypropyltrimethoxysilane sol-gel-coated capillaries, the C(18) ester-bonded column showed the best separation of a mixture of seven pentapeptides under identical conditions of buffer, pH, and applied voltage.  相似文献   

9.
Sol-gel coating containing highly polar cyanopropyl and nonpolar poly(dimethylsiloxane) components (sol-gel CN-PDMS coating) was developed for capillary microextraction (CME). The sol-gel chemistry provided an efficient means to immobilize the CN-PDMS coating by establishing chemical anchorage between the coating and the fused silica capillary inner surface. This chemical bond provided excellent thermal and solvent stability to the created sol-gel coating. For the extraction of polar and nonpolar analytes, the upper allowable conditioning temperatures were 330 degrees C and 350 degrees C, respectively. To our knowledge, this is the first time when a CN-PDMS thick coating survived such a high operation temperature. The prepared sol-gel CN-PDMS coating provided effective extraction of polar and nonpolar analytes simultaneously from aqueous samples. The cyanopropyl moiety in sol-gel CN-PDMS coatings provided effective extraction of highly polar analytes such as free fatty acids, alcohols, and phenols without requiring derivatization, pH adjustment or salting out procedures. The PDMS moiety, on the other hand, provided efficient extraction of nonpolar analytes. The extraction properties of the sol-gel CN-PDMS coatings can be fine tuned via manipulation of relative proportions of 3-cyanopropyltriethoxysilane and hydroxy-terminated PDMS in the sol solution used to create the coatings. Detection limits of nanogram/liter (ng/L) were achieved for both highly polar and nonpolar analytes directly extracted from aqueous media using sol-gel CN-PDMS coated microextraction capillaries followed by GC analysis.  相似文献   

10.

A novel scalable procedure for the thermally initiated polymerisation of bonded monolithic porous layers of controlled thickness within open tubular fused silica capillaries (monoPLOT columns) is presented. Porous polymer layers of either polystyrene-divinylbenzene or butyl methacrylate-ethylene dimethacrylate, of variable thickness and morphology were polymerised inside fused silica capillaries utilising combined thermal initiation and laminar flow of the polymerisation mixture. The procedure enables the production through thermal initiation of monoPLOT columns of varying length, internal diameter, user defined morphology and layer thickness for potential use in both liquid and gas chromatography. The morphology and thickness of the bonded polymer layer on the capillary wall is strongly dependent on the laminar flow properties of the polymerisation mixture and the changing shear stress within the fluid across the inner diameter of the open capillary. Owing to the highly controlled rate of polymerisation and its dependence on fluid shear stress at the capillary wall, the procedure was demonstrably scalable, as illustrated by the polymerisation of identical layers within different capillary diameters.

  相似文献   

11.
张金兰  周同惠 《色谱》2000,18(6):495-499
 采用溶胶 凝胶技术 ,通过一步及多步涂层的方法制备了聚乙烯吡咯烷酮涂层柱 ,考察了涂层过程中硅烷化试剂比例、反应时间、聚乙烯吡咯烷酮的浓度对涂层效果的影响 ,并以电渗淌度及柱效为指标对涂层柱进行了评价。  相似文献   

12.
毛细管电泳柱及微流控芯片通道涂层的发展   总被引:2,自引:0,他引:2  
刘春叶  陈杰瑢 《色谱》2005,23(1):63-68
综述了用于毛细管电泳柱和微流控芯片通道的涂层材料和涂层技术的发展状况,以及涂层对分离效果和分离结果重现性的影响。将涂层材料按照动态和静态分类,静态涂层又分别按照均聚物、共聚物、杂环类等进行讨论;综述了交联反应法、溶胶-凝胶法、辐照法、化学沉积法等涂层的制备方法。对毛细管电泳柱和微流控芯片通道的改良具有一定的参考价值。  相似文献   

13.
A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME).  相似文献   

14.
A new procedure for coating capillaries for capillary electrophoresis applying a sapphire (alumina) containing epoxy resin was developed. Coated capillaries showed considerably reduced electroosmotic flow, and decreased the adsorption of proteins to the internal wall of the capillary. Coating is transparent down to 195 nm and can be used with advantage to analyze different kinds of substances, such as small cations and/or anions, and proteins.  相似文献   

15.
The preparation of photo-polymerized sol–gel monolithic stationary phases (MSP) within 100 μm internal diameter polyacrylate-coated fused-silica capillaries for use in capillary electrochromatography (CEC) was optimized. Eight mixtures containing different amounts of methacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid solution as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photo-initiator were irradiated at 370 nm inside the capillaries in order to complete the MSP polymerization, according to a fractional factorial experimental design 2IV4-1. All the preparation procedure, from capillary pretreatment until the MSP is ready to use in CEC, were made in less than four hours in mild conditions. A high pressurization injection device (HPID) useful for micro-volume syringes was built in order to achieve practical, controlled and precise injections of sols, solvents and electrolytes in the capillaries. The eight MSP were equally washed, conditioned and submitted to CEC procedures via short-end injection, which showed higher efficiency and peak height taking shorter analysis time. Electrochromatographic behaviors of the MSP were corroborated with morphological characterizations by scanning electron microscopy. The optimum condition, which allowed the separation of standard mixture containing thiourea (marker compound), naphthalene, acenaphthene, fluorene, phenanthrene and anthracene in twelve minutes without external pressure assistance, showed efficiencies up to 51,460 N/m, relative standard deviation from 0.05 to 3.3% for migration/retention time and from 0.14 to 1.6% for relative area (considering thiourea as an internal standard) and also showed no statistical evidence that three MSP prepared at the same condition are different within 95% confidence interval.  相似文献   

16.
Zhang J  Horváth C 《Electrophoresis》2003,24(1-2):115-120
A simple coating technique by using uncross-linked dextran has been developed for fused-silica capillaries to be used in capillary electrophoresis of basic proteins. The capillaries were first silanized with a heterobifunctional silane (gamma-aminopropyltriethoxylsilane), which served as a coupling agent between the capillary inner wall and the polysaccharide coating. Dextran of high molecular mass (about 70 kDa) was activated with 1,1'-carbonyldiimidazole. Then the activated dextran was coupled to the primary amino groups that were anchored onto the inner wall of the silanized capillaries. The residual reactive groups on the dextran were further substituted by neutral functions in a coupling reaction with excess ethanolamine. By using dimethyl sulfoxide (DMSO) rather than aqueous buffer as the reaction medium, the extent of substitution was improved by minimizing the residual reactive groups at the surface. Since they are ionogenic, the electrosmotic flow in the system is relatively low. The chemically bound dextran coating showed good reproducibility and stability. In electrophoretic experiments basic proteins were separated with high efficiency by use of the dextran-coated fused-silica capillary columns. The main advantage of the method described here is that both polysaccharide activation and amine-coupling reactions were carried out under mild conditions at room temperature without catalysts. For this reason, the method is recommended to coat the inner wall of microfluidic separation channels which would not tolerate a harsh treatment.  相似文献   

17.
In this work, a new generation UV-transparent polymer, fluorinated ethylenepropylene copolymer (FEP) exhibiting a low degree of crystallinity, extruded in dimensions similar to the most commonly used CE capillaries of approximately 80 mum id and about 360 mum od was investigated for its use as a CE capillary. FEP is transparent down to the low-UV region, and as fluorinated polymers in general are good electrical insulators and exhibit reasonable heat conductivity, it has considerable potential as a material for electrodriven analysis in capillary or microchip formats. The FEP capillary has been characterised with regard to some important aspects for its use as a CE capillary, including its profile of EOF versus pH, as well as procedures for manipulating EOF by coating the inner capillary wall with various semipermanent and dynamic layers. The FEP capillaries were tested and compared with fused-silica capillary for the separation of inorganic and small organic ions using conditions involving direct and indirect detection in the low-UV region. Finally, advantages of the use of the FEP capillary for simultaneous detection of a mixture containing nine inorganic cations and anions using indirect photometric detection with a movable light-emitting diode (LED) detector and a novel electrolyte are demonstrated.  相似文献   

18.
The sol-gel surface modification is used for capillary isoelectric focusing of microorganisms and biopolymers. The coating strongly decreases the electroosmotic flow so that it enables the use of the short capillaries down to 100 mm in the separation length. The examples of capillary isoelectric focusing of the low-molecular-mass pI markers and mixed cultures of microbial populations of Escherichia coli, Candida albicans, Staphylococcus epidermidis, and Enteroccocus faecalis with UV detection are shown. It is possible to quantify bacterial cells according to their peak areas; the minimum detectable number of microbial cells was 5 x 10(2)-1 x 10(3). The compatibility of sol-gel capillaries with sensitive fluorometric detection of fluorescent pI markers together with fluorescein labeled proteins is demonstrated.  相似文献   

19.
Open-tubular columns for capillary electrochromatography (CEC) were formed by immobilising dodecanethiol gold nanoparticles on prederivatised 3-aminopropyl-trimethoxysilane (APTMS) or 3-mercaptopropyl-trimethoxysilane (MPTMS) fused-silica capillaries. The initial stage of this research involved the synthesis and characterisation of dodecanethiol gold nanoparticles, with tunnelling electron microscopy analysis of the dispersed phase of the gold nanoparticles dispersion in CHCl3, revealing spherical particles. The surface features of an Au-MPTMS coated capillary column were determined using scanning electron microscopy. The electroosmotic flow characteristics of Au-APTMS and Au-MPTMS capillary columns were then determined, by varying the pH and the voltage. The electrochromatographic properties of the gold nanoparticles CEC capillaries were investigated using a "reversed-phase" test mixture of thiourea, benzophenone and biphenyl and selected pyrethroid pesticides. Efficient separations of benzophenone and biphenyl solutes on Au-MPTMS and Au-APTMS capillary columns were obtained, as were linear plots of logarithm capacity factor versus % MeOH. A study of the reproducibility of retention for these solutes on Au-APTMS, Au-MPTMS and on a loosely coated capillary demonstrated the necessity of a coupling agent to prevent the gold nanoparticles from washing-off. These dodecanethiol gold capillary columns are easier to produce and operate than packed capillary columns. The research work confirms the use of gold nanoparticles as a novel phase for open-tubular CEC, demonstrating reproducible retention and characteristic reversed-phase behaviour.  相似文献   

20.
Sol-gel coating with covalently bonded low-molecular-weight (MW<300 Da) poly(ethylene glycol) (PEG) chains was developed for capillary microextraction (CME). The sol-gel chemistry proved effective in the immobilization of low-molecular-weight PEGs thanks to the formation of chemical bonds between the organic-inorganic hybrid sol-gel PEG coating and the fused silica capillary inner surface. This chemical anchorage provided excellent thermal and solvent stability to the created sol-gel PEG coating as is evidenced by its high upper limit of allowable conditioning temperature (340 degrees C) and its practically identical performance before and after rinsing with various solvents. The prepared sol-gel PEG coating provided simultaneous extraction of moderately polar and highly polar analytes from aqueous samples without requiring derivatization, pH adjustment or salting-out procedures. Detection limits on the order of nanogram per liter (ng/L) were achieved in CME-GC-flame ionization detection experiments designed for the preconcentration and trace analysis of both highly polar and moderately polar compounds extracted directly from aqueous media using sol-gel short-chain PEG coated microextraction capillaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号