首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A simple, rapid, sensitive and low‐cost method using capillary electrophoresis (CE) coupled with field‐amplified sample stacking (FASS) has been developed and validated for the simultaneous determination of strychnine and brucine residues in human urine. Before sample loading, a water plug (3.5 kPa, 3 s) was injected to contain sample cations and to permit FASS. Electrokinetic injection at a voltage (20 kV, 25 s) was then used to introduce cations. Separation was performed using 20 mM acetate buffer (pH 3.8) with an applied voltage of 20 kV. The calibration curves were linear over a range of 8.00–2.56 ∞ 102 ng/mL (r = 0.9995) for strychnine and 10.0–3.20 × 102 ng/mL (r = 0.9999) for brucine. Extraction recoveries in urine were greater than 79.6 and 82.8% for strychnine and brucine, respectively, with an RSD of less than 4.9%. The detection limits (signal‐to‐noise ratio 3) for strychnine and brucine were 2.00 and 2.50 ng/mL, respectively. A urine sample from one healthy female volunteer (26 years old, 50 kg) was pretreated and analyzed. Strychnine and brucine levels in urine could be detected 24 h after administration. On these grounds, this method was feasible for application to preliminary screening of trace levels of abused drugs for both doping control and forensic analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Zhang Z  Wang D  Zhang L  Du M  Chen G 《The Analyst》2008,133(9):1187-1194
In competition sports, a diuretic is a substance widely prohibited by the World Anti-Doping Agency (WADA). In this paper, a sensitive, rapid and convenient analytical method for the determination of acidic [furosemide (FUROS) and bumetanide (BUMET)] and basic [triamterene (TRIAM)] diuretics in human urine was developed by hollow fiber-based liquid-liquid-liquid microextraction (LLLME) coupled with HPLC-UV. The LLLME conditions, such as the organic extraction solvent, the acidity and basicity of the donor- and acceptor-phases, stirring speed, extraction time and ionic strength, were studied in detail. Under the optimum conditions, the linear ranges of furosemide, bumetanide and triamterene were 1.2-250, 5.0-250 and 5.0-500 ng mL(-1), respectively. The detection limits were 0.5 ng mL(-1) for furosemide, 1.2 ng mL(-1) for bumetanide and 2.0 ng mL(-1) for triamterene. The LLLME obtained a great improvement of the detection limits for all the analytes considered here, to the ng mL(-1) level, which almost reaches the level of the LC-MS method. This new LLLME method provided very high enrichments: 117-fold for furosemide, 175-fold for bumetanide and 68-fold for triamterene. Since the hollow fiber membrane was sealed, it could be used for extracting the diuretics directly from 'dirty' human urine samples without any clean-up procedures. With LLLME-HPLC, the corresponding recoveries ranged from 79.2 to 109% with the RSDs not exceeding 5.5% for the three diuretics in the spiked urine samples. The method was successfully applied to analyse the amounts of the three diuretics in real urine samples of volunteers after oral drug-taking. This new method proves to be sensitive and reliable and thus renders a very suitable means for the determination of trace diuretics in human urine based on the common HPLC instrument.  相似文献   

3.
A simple, sensitive, and useful concentration method for lovastatin (Lvt) in urine has been developed based on the transient moving chemical reaction boundary method (tMCRBM) in capillary electrophoresis. The MCRB is formed with acidic sample buffer (Gly-HCl) and alkaline running buffer (Gly-NaOH). The following optimal conditions were determined for stacking and separation: electrophoretic buffer of 100 mM Gly- NaOH (pH 11.52), sample buffer of 20 mM Gly-HCl (pH 4.93), fused-silica capillary of 76 cm × 75-μm i.d (67 cm from detector), sample injection at 14 mbar for 3 min. A 21- to 26-fold increase in peak height was achieved for detection of Lvt in urine under the optimal conditions compared with normal capillary zone electrophoresis. By combining the sample pretreatment procedure with the stacking method, the sensitivity of Lvt in urine was increased by 105- to 130-fold. The limits of detection (LOD) and quantification (LOQ) for Lvt in urine were decreased to 8.8 ng/mL and 29.2 ng/mL, respectively. The intra-day and inter-day precision values (expressed as RSD) were 2.23–3.61% and 4.03–5.05%, respectively. The recoveries of the analyte at three concentration levels changed from 82.65 to 100.49%.  相似文献   

4.
Law WS  Zhao JH  Li SF 《Electrophoresis》2005,26(18):3486-3494
Field-amplified sample stacking (FASS) is used to separate basic proteins in a poly-(vinyl alcohol)-coated bubble cell capillary. To our knowledge, this is the first paper describing the on-column stacking of proteins (as cations) using FASS in bubble cell capillary. The bubble cell capillary is fabricated using a one-step method. Cetyltrimethylammonium chloride is added into the running buffer to reverse the EOF and, thus, to pump the water plug out during the sample stacking step. The effect of the water plug lengths and sample injection durations were investigated and optimized. The results obtained were compared with those for the normal capillary without bubble cell in terms of resolution and sensitivity enhancement. Under the optimal condition, this method can improve the sensitivity of the peak areas ranging from 5000- to 26 000-fold. The RSDs (n = 5) of the migration time and peak area are satisfactory (less than 0.6 and 12%, respectively). Application of the capillary electrophoresis method with bubble cell, FASS, and UV detection thereby leads to the determination of these proteins at concentrations ranging from 3 to 10 ng/mL, based on a signal-to-noise ratio of 3:1.  相似文献   

5.
Indirect LIF detection was applied to the detection of four acidic diuretics separated by CZE. Semiconductor laser was employed to provide the stable excitation of 473 nm. With an optimized electrophoretic buffer system which contained 5 mM of triethylamine, 0.1 microM of fluorescein, and 5% of n-butanol, fast separation of four diuretics (ethacrynic acid, chlorthalidone, bendroflumethiazide, and bumetanide) can be performed within 3 min with the detection limits of 0.2-2 microg/mL. The impacts of buffer components including the concentrations of the electrolytes, fluorescence probe, and the organic additives were demonstrated. The method was applied for the detection of diuretics in urine. As an alternative way for the fast analysis of diuretics, this indirect detection method provided the technical support for future microchip performances, in which diuretics may be detected in the microchip by the common LIF detector without derivatization.  相似文献   

6.
Yeh HH  Yang YH  Ko JY  Chen SH 《Electrophoresis》2008,29(17):3649-3657
Field-amplified sample stacking (FASS) in capillary electrophoresis (CE) was used to determine the concentration of donepezil, an acetylcholinesterase inhibitor, in human plasma. A sample pretreatment by liquid-liquid extraction with isopropanol/n-hexane (v/v 3:97) and subsequent quantification by FASS-CE was used. Before sample loading, a water plug (0.5 psi, 6 s) was injected to permit FASS. Electrokinetic injection (7 kV, 90 s) was used to introduce sample cations. The separation condition for donepezil was performed in electrolyte solutions containing Tris buffer (60 mM, pH 4.0) with sodium octanesulfonate 40 mM and 0.01% polyvinyl alcohol as a dynamic coating to reduce analytes' interaction with capillary wall. The separation was performed at 28 kV and detected at 200 nm. Using atenolol as an internal standard, the linear ranges of the method for the determination of donepezil in human plasma were over a range of 1-50 ng/mL. The limit of detection was 0.1 ng/mL (S/N=3, sampling 90 s at 7 kV). One female volunteer (54 years old) was orally administered a single dose of 10 mg donepezil (Aricept, Eisai), and blood samples were drawn over a 60 h period for pharmacokinetic study. The method was also applied successfully to monitor donepezil in sixteen Alzheimer's disease patients' plasmas.  相似文献   

7.
A sensitive high-performance capillary zone electrophoresis (CZE) with head-column field-amplified sample stacking (FASS) in binary system has been developed for the simultaneous determination of zotepine and its active metabolite, norzotepine, in human plasma. The separation of zotepine and norzotepine was performed using a background electrolyte consisting of 50% ethylene glycol-borate buffer (20mM, pH 8.0) solution with 20% methanol as the running buffer and on-column detection at 200 nm. Under the optimal FASS-CZE condition, good separation with high efficiency and short analysis time is achieved. Several parameters affecting the separation and sensitivity of the drug were studied, including sample matrix, pH and concentrations of the borate buffer, ethylene glycol and methanol. Using clozapine as an internal standard, the linear ranges of the method for the determination of zotepine and norzotepine in human plasma were over 3-100 ng/mL; the detection limits of zotepine and norzotepine in plasma were 2 and 1 ng/mL, respectively. A sample pretreatment by means of solid-phase extraction (SPE) with subsequent quantitation by FASS-CZE was used. The application of the proposed method for determination of zotepine and norzotepine in plasma collected after oral administration of 125 mg zotepine in one schizophrenic patient was demonstrated.  相似文献   

8.
卢明华  李鑫  冯强  陈国南  张兰 《色谱》2010,28(3):253-259
采用自制的新型有机聚1-十六碳烯-三羟甲基丙烷三甲基丙烯酸酯[poly(1-hexadecene-co-TMPTMA)]整体柱,建立了一种同时分离检测6种利尿剂(氯噻酮、氢氯噻嗪、美托拉宗、吲哒帕胺、坎利酮和螺内酯)的毛细管电色谱(CEC)新方法,并成功应用于志愿者实际尿样的分析测定。在最佳实验条件下,6种利尿剂包含2种中性物质(坎利酮和螺内酯)和2种同分异构体(美托拉宗和吲哒帕胺)在11.0 min内得到基线分离,柱效分别达到218000、176000、143000、121000、108000、103000 塔板/m。6种利尿剂在1.15~86.0 μg/mL范围内呈良好的线性关系,相关系数R2 ≥0.990 8,检出限(LOD)在0.35~0.65 μg/mL范围内,回收率为81.9%~105%,相对标准偏差(RSD)小于4.7%。结果表明,实验所建立的基于poly(1-hexadecene-co-TMPTMA)整体柱的CEC方法,具有良好的重复性和稳定性,能够实现对多种利尿剂的同时分离检测。该方法已成功应用于来自志愿者实际尿样的分析,该方法可以用于利尿剂类药物的初筛。  相似文献   

9.
A novel technique utilizing the adsorptive potential of immobilized multi‐walled carbon nanotubes (I‐MWCNT) in hollow fiber liquid‐phase microextraction (HF‐LPME) was developed for the determination of diuretics in urine. In this study, the potential of carbon nanotubes as a sorbent for three‐phase liquid‐phase microextraction of diuretics from urine samples was evaluated. Analysis was performed using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). A novel method was applied to detect acetazolamide (AAA), chlorothiazide (CTA), hydrochlorothiazide (HCT), hydroflumethiazide (HFT), clopamide (CA), trichlormethiazide (TCM), althiazide (AT) and bendroflumethiazide (BFT) in urine. Two‐step extractions using different times and temperatures for each step were adopted. Parameters influencing the extraction efficiency, including the extraction solvent, sample pH, salt concentration, extraction time and extraction temperature were systematically optimized. Under the resulting optimal extraction conditions, this method showed good linearity over an analytes concentration range of 1 to 1000 ng/mL, high extraction repeatability with relative standard deviations of less than 6%, and low detection limits (0.09 to 0.51 ng/mL). The application of the methods to the determination of diuretics in real samples was tested by analyzing urine samples of patient.  相似文献   

10.
Cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-Sweep-MEKC) was directly used to test some abuse drugs in human urine, including morphine (M), codeine (C), ketamine (K) and methamphetamine (MA). First, phosphate buffer (50 mM, pH 2.5) containing 30% methanol was filled into uncoated fused silica capillary (40 cm, 50 microm I.D.), then high conductivity buffer (100 mM phosphate, 6.9 kPa for 99.9 s) was followed. Electrokinetic injection (10 kV, 500 s) was used to load samples and to enhance sensitivity. The stacking step and separation were performed at -20 kV and 200 nm using phosphate buffer (25 mM, pH 2.5) containing 20% methanol and 100 mM sodium dodecyl sulfate. Using CSEI-Sweep-MEKC, the analytes could be simultaneously analyzed and have a detection limit down to ppb level. It was unnecessary to have sample pretreatments. During method validation, calibration plots were linear (r>or=0.9982) over a range of 150-3,000 ng/mL for M and C, 250-5,000 n g/mL for MA, and 50-1,000 ng/mL for K. The limits of detection were 15 ng/mL for M and C, and 5 ng/mL for MA and K (S/N=3, sampling 500 s at 10 kV). Comparing with capillary zone electrophoresis, the results indicated that this stacking method could increase 6,000-fold sensitivity for analysis of MA. Our method was applied for analysis of 28 real urine samples. The results showed good coincidence with immunoassay and GC-MS. This method was feasible for application to detect trace levels of abused drugs in forensic analysis.  相似文献   

11.
Tsai TF  Lee MR 《Talanta》2008,75(3):658-665
Trace amounts of diuretics were determined in human urine by hollow fiber liquid-phase microextraction (LPME) combined with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in this study. Chromatography was performed on a C(8) reversed-phase column. A 25 microL n-octanol was used to extract analytes in urine. Extraction was optimized using a pH 2 solution spiked with 0.15 g/mL NaCl for 40 min at 40 degrees C with 1010 rpm stirring. The limits of detection of diuretics in urine were 0.3-6.8 ng/mL, and linearity range was 1-1000 ng/mL. Recoveries of spiked 50 ng/mL diuretics were 97.7-102.5%. The intra-day precision and inter-day precision were 3-18% and 4-21%, respectively. The diuretics concentration profiles in patient urine were also determined. The results of this study reveal the adequacy of LPME-LC-MS/MS method for analyzing diuretics in urine and quantification limits exceed World Anti-Doping Agency requirements.  相似文献   

12.
毛细管区带电泳用于多种类兴奋剂的同时快速分离检测   总被引:3,自引:2,他引:1  
肖惠  童萍  冯强  张兰 《色谱》2008,26(4):444-448
建立了一种同时分离检测包括利尿剂、蛋白同化剂、β-阻断剂、麻醉剂、β2-激动剂、刺激剂等6类8种兴奋剂的毛细管区带电泳-紫外检测法。优化的色谱条件为:以50 mmol/L甲酸铵-氨水(pH 7.8)缓冲液为运行液,于3 kPa下进样10 s,分离电压为20 kV,检测波长为214 nm。在此条件下,8种兴奋剂在7 min内实现了快速的基线分离。在相应的浓度范围内,8种组分的浓度与峰高呈良好的线性关系,检出限达为0.2~0.7 μg/mL。该方法快速,分析成本低,无污染,非常适用于多种类兴奋剂的同时快速检测。  相似文献   

13.
《Electrophoresis》2018,39(17):2195-2201
A sensitive, fast, and effective method, field‐amplified sample stacking (FASS) in capillary electrophoresis, has been established for the separation and determination of corynoxine and corynoxine B. Hydroxypropyl‐β‐CD (HP‐β‐CD) and tetrabutylammonium‐L‐glutamic acid (TBA‐L‐Glu) were used as additives in the separation system. Electrokinetic injection was chosen to introduce sample from inlet at 10 kV for 50 s after a water plug (0.5 psi, 4 s) was injected to permit FASS. The running buffer (pH 6.1) was composed of 40 mM sodium dihydrogen phosphate solution, 130 mM HP‐β‐CD, and 10 mM TBA‐L‐Glu and the separation voltage was 20 kV. Under the optimum conditions, corynoxine and corynoxine B were successfully enriched and separated within 12 min and the sensitivity was improved approximately by 700–900 folds. Calibration curves were in a good linear relationship within the range of 62.5–5.00 × 103 ng/mL for both corynoxine and corynoxine B. The limits of detection (S/N = 3) and quantitation (S/N = 10) were 14.9, 45.2 ng/mL for corynoxine and 11.2, 34.5 ng/mL for corynoxine B, respectively. Finally, this method was successfully applied for the determination of corynoxine and corynoxine B in the stems with hooks of Uncaria rhynchophylla and its formulations.  相似文献   

14.
张兰  童萍  何聿  黄端华  陈国南 《色谱》2005,23(1):22-25
应用毛细管电泳-电化学检测法对利尿剂氢氯噻嗪和氨苯喋啶进行了研究。考察了电化学检测和电泳分离条件对氢氯噻嗪和氨苯喋啶分离、检测的影响,结果表明在最佳分离、检测条件下,两种待测物在8 min内达到基线分离。氨苯喋啶和氢氯噻嗪的检测限分别达到0.29和0.25 mg/L。对两物质于日内和日间重复测定7次,迁移时间的日内相对标准偏差(RSD)不大于1.6%,峰电流的日内RSD不大于 3.1%; 迁移时间的日间RSD不大于1.7%,峰电流的日间RSD不大于 4.9%。 将该方法用于复方氨苯喋啶成药中氨苯喋啶和氢氯噻嗪的分离和测定,成药的检测结果与标示量比较,相对误差小于4.6%。在模拟尿样中对氢氯噻嗪和氨苯喋啶进行标准溶液添加回收实验,其回收率分别为93.5%~96.7%和96.6%~97.2%,结果令人满意。  相似文献   

15.
A capillary zone electrophoresis (CZE) method with ultraviolet-visible detection has been established and validated for the determination of five phenothiazines: thiazinamium methylsulfate, promazine hydrochloride, chlorpromazine hydrochloride, thioridazine hydrochloride, and promethazine hydrochloride in human urine. Optimum separation was obtained on a 64.5 cm x 75 microm bubble cell capillary using a buffer containing 150 mM tris(hydroxymethyl)aminomethane and 25% acetonitrile at pH 8.2, with temperature and voltage of 25 degrees C and 20 kV, respectively. Naphazoline hydrochloride was used as an internal standard. Field-amplified sample injection (FASI) has been applied to improve the sensitivity of the detection. Considering the influence of parameters affecting the on-line preconcentration (nature of preinjection plug, sample solvent composition, injection times, and injection voltage) and due to the significant interactions among them, in this paper we propose for the first time the application of a multivariate approach to carry out the study. The optimized conditions were as follows: preinjection plug of water for 7 s at 50 mbar, electrokinetic injection for 40 s at 6.2 kV, and 32 microm of H3PO4 in the sample solvent. Also, a solid-phase extraction (SPE) procedure is developed to obtain low detection limits and an adequate selectivity for urine samples. The combination of SPE and FASI-CZE-UV allows adequate linearities and recoveries, low detection limits (from 2 to 5 ng/mL), and satisfactory precisions (3.0-7.2% for an intermediate RSD %).  相似文献   

16.
《Electrophoresis》2018,39(16):2117-2124
Goji berry, fruits of the plant Lycium barbarum L., has long been used as traditional medicine and functional food in China. In this work, a simple and easy‐operation on‐line concentration capillary electrophoresis (CE) for detection flavonoids in goji berry was developed by coupling of field amplified sample stacking (FASS) with an electroosmotic (EOF) pump driving water removal process. Due to the EOF pump and electrokinetic injection showing different influence on the concentration, the analytes injection condition should be systemically studied. Thereafter, the verification of the analytes injection conditions was achieved using response surface experimental design. Under the optimum conditions, 86–271 folds sensitivity enhancement upon normal capillary zone electrophoresis (CZE, 50 mbar × 5 s) were achieved for six flavonoids, and the detection limits ranged from 0.35 to 1.82 ng/mL; the LOQ ranged from 1.20 to 6.01 ng/mL. Eventually, the proposed method was applied to detect flavonoids in 30 goji berry samples from different habitats of China; and the results indicated that the flavonoids were rich in the eluent of 30–60% methanol, which provided a reference for extraction of goji berry flavonoids.  相似文献   

17.
A method based on poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith microextraction (PMME) and online preconcentration technique of field-amplified sample stacking (FASS) was proposed for sensitive capillary electrophoresis-ultraviolet (CE-UV) analysis of 12 sulfonamides (sulfamethazine, sulfamethoxypyridazine, sulfathiazole, sulfamerazine, sulfameter, sulfadoxine, sulfadimethoxine, sulfamonomethoxine sodium, sulfachlorpyridazine, sulfamethoxazole, sulfamethizole, and sulfisoxazole) in chicken samples. The conditions of PMME were optimized for the improvement of extraction efficiency and reduction of the matrix interferences from chicken sample. The best separation was achieved within 15min using a buffer of 100mM phosphate electrolyte (pH 7.3) with temperature and voltage of 20 degrees C and 25kV, respectively. By applying FASS, detection limits of 3.49-16.7ng/g were achieved with satisfactory precision (RSD<==13%) and recovery (96.3-104%) over a linear range of 50-1000ng/g for most analytes.  相似文献   

18.
In the present study, field amplified sample stacking (FASS) techniques in the nonaqueous capillary electrophoresis method (NACE) were introduced for the on-line concentration of the acrylamide to improve acrylamide detection at 210 nm by diode-array detection. Acetonitrile (ACN) as a nonaqueous solvent permits acrylamide to be protonated through the change of its acid-base chemistry, allowing capillary electrophoretic separation of this compound. Choosing 30 mmol L(-1) HClO(4), 20 mmol L(-1) NaClO(4), 218 mmol L(-1) CH(3)COOH in ACN as the separation electrolyte and employing sample stacking methods, the LOD value of acrylamide was decreased to 2.6 ng mL(-1) with electrokinetic injection and 4.4 ng mL(-1) with hydrodynamic injection. Optimized stacking conditions were applied to the determination of acrylamide in several foodstuffs. The method is simple, rapid, inexpensive, and widely applicable for the determination of acrylamide in food samples.  相似文献   

19.
Wei F  Zhang M  Feng YQ 《Electrophoresis》2006,27(10):1939-1948
A novel poly(methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith microextraction method coupled with CZE was proposed for rapidly determining a mixture of opiates comprising heroin, 6-monoacetylmorphine, morphine, codeine, papaverine, and narcotine in human urine. The extraction device contained a regular plastic syringe, the poly(MAA-EGDMA) monolithic capillary tube (530 microm id x 3 cm) and a plastic pinhead, which connected the monolithic capillary tube and the syringe without leakage. In the polymer monolith microextraction, the sample solution was ejected via the monolithic capillary tube by a programmable syringe pump, followed by desorption with an aliquot of appropriate solution, which was collected into a vial for the subsequent analysis by CZE. The best separation was achieved using a buffer composed of 0.1 M disodium hydrogen phosphate (adjusted to pH 4.5 with 1 M hydrochloric acid) and 20% methanol v/v with temperature and voltage of 25 degrees C and 25 kV, respectively. By applying electrokinetic injection with field-enhanced sample stacking, detection limits of 6.6-19.5 ng/mL were achieved. Excellent method of reproducibility was found over a linear range of 80-2000 ng/mL.  相似文献   

20.
On-line determination of the anti-tumor drug 5-fluorouracil (5-FU) and its prodrug, tegafur (TF) was achieved for the first time by capillary electrophoresis with large-volume sample stacking (CE-LVSS). The optimal electrophoretic buffer consisted of 30 mM phosphate buffer at pH 8.0. Without the LVSS procedure, the limits of detection (LOD) were 600.5 ng/mL and 771.4 ng/mL for 5-FU and TF, respectively. With the LVSS procedure, the sensitivity was significantly improved by about two orders of magnitude (the LODs of 5-FU and TF were decreased to 7.9 ng/mL and 6.5 ng/mL, respectively). The %RSD was less than 5%. This method compared favorably with other reported techniques and was applied successfully to the quantitative analysis of anti-tumor drugs in commercial injection preparations. The results show that the method is simple, fast (less than 3 min), highly selective, and sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号